scholarly journals Formicine ants swallow their highly acidic poison for gut microbial selection and control

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Simon Tragust ◽  
Claudia Herrmann ◽  
Jane Häfner ◽  
Ronja Braasch ◽  
Christina Tilgen ◽  
...  

Animals continuously encounter microorganisms that are essential for health or cause disease. They are thus challenged to control harmful microbes while allowing the acquisition of beneficial microbes. This challenge is likely especially important for social insects with respect to microbes in food, as they often store food and exchange food among colony members. Here we show that formicine ants actively swallow their antimicrobial, highly acidic poison gland secretion. The ensuing acidic environment in the stomach, the crop, can limit the establishment of pathogenic and opportunistic microbes ingested with food and improve the survival of ants when faced with pathogen contaminated food. At the same time, crop acidity selectively allows acquisition and colonization by Acetobacteraceae, known bacterial gut associates of formicine ants. This suggests that swallowing of the poison in formicine ants acts as a microbial filter and that antimicrobials have a potentially widespread but so far underappreciated dual role in host-microbe interactions.

Author(s):  
Simon Tragust ◽  
Claudia Herrmann ◽  
Jane Häfner ◽  
Ronja Braasch ◽  
Christina Tilgen ◽  
...  

AbstractAnimals continuously encounter microorganisms that are essential for health or cause disease. They are thus challenged to control harmful microbes while allowing acquisition of beneficial microbes. This challenge is likely especially important for social insects with respect to microbes in food, as they often store food and exchange food among colony members. Here we show that formicine ants actively swallow their antimicrobial, highly acidic poison gland secretion. The ensuing acidic environment in the stomach, the crop, limits establishment of pathogenic and opportunistic microbes ingested with food and improves survival of ants when faced with pathogen contaminated food. At the same time, crop acidity selectively allows acquisition and colonization by Acetobacteraceae, known bacterial gut associates of formicine ants. This suggests that swallowing of the poison gland secretion acts as a microbial filter in formicine ants and indicates a potentially widespread but so far underappreciated dual role of antimicrobials in host-microbe interactions.


2009 ◽  
Vol 4 (10) ◽  
pp. 457-462 ◽  
Author(s):  
Sebastian Fraune ◽  
Thomas C. G. Bosch ◽  
René Augustin

2021 ◽  
Author(s):  
Manoj Reddy Medapati ◽  
Anjali Y. Bhagirath ◽  
Nisha Singh ◽  
Prashen Chelikani

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 999
Author(s):  
Sue E. Crawford ◽  
Sasirekha Ramani ◽  
Sarah E. Blutt ◽  
Mary K. Estes

Historically, knowledge of human host–enteric pathogen interactions has been elucidated from studies using cancer cells, animal models, clinical data, and occasionally, controlled human infection models. Although much has been learned from these studies, an understanding of the complex interactions between human viruses and the human intestinal epithelium was initially limited by the lack of nontransformed culture systems, which recapitulate the relevant heterogenous cell types that comprise the intestinal villus epithelium. New investigations using multicellular, physiologically active, organotypic cultures produced from intestinal stem cells isolated from biopsies or surgical specimens provide an exciting new avenue for understanding human specific pathogens and revealing previously unknown host–microbe interactions that affect replication and outcomes of human infections. Here, we summarize recent biologic discoveries using human intestinal organoids and human enteric viral pathogens.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jack Jansma ◽  
Sahar El Aidy

AbstractThe human gut harbors an enormous number of symbiotic microbes, which is vital for human health. However, interactions within the complex microbiota community and between the microbiota and its host are challenging to elucidate, limiting development in the treatment for a variety of diseases associated with microbiota dysbiosis. Using in silico simulation methods based on flux balance analysis, those interactions can be better investigated. Flux balance analysis uses an annotated genome-scale reconstruction of a metabolic network to determine the distribution of metabolic fluxes that represent the complete metabolism of a bacterium in a certain metabolic environment such as the gut. Simulation of a set of bacterial species in a shared metabolic environment can enable the study of the effect of numerous perturbations, such as dietary changes or addition of a probiotic species in a personalized manner. This review aims to introduce to experimental biologists the possible applications of flux balance analysis in the host-microbiota interaction field and discusses its potential use to improve human health.


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 243
Author(s):  
Vivian S. Lin

Continued expansion of the chemical biology toolbox presents many new and diverse opportunities to interrogate the fundamental molecular mechanisms driving complex plant–microbe interactions. This review will examine metabolic labeling with click chemistry reagents and activity-based probes for investigating the impacts of plant-associated microbes on plant growth, metabolism, and immune responses. While the majority of the studies reviewed here used chemical biology approaches to examine the effects of pathogens on plants, chemical biology will also be invaluable in future efforts to investigate mutualistic associations between beneficial microbes and their plant hosts.


Sign in / Sign up

Export Citation Format

Share Document