channel expansion
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 30)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 11 (18) ◽  
pp. 8621
Author(s):  
Chang-Min Kim ◽  
Ellen J. Hong ◽  
Kyungyong Chung ◽  
Roy C. Park

Although mammography is an effective screening method for early detection of breast cancer, it is also difficult for experts to use since it requires a high level of sensitivity and expertise. A computer-aided detection system was introduced to improve the detection accuracy of breast cancer in mammography, which is difficult to read. In addition, research to find lesions in mammography images using artificial intelligence has been actively conducted in recent days. However, the images generally used for breast cancer diagnosis are high-resolution and thus require high-spec equipment and a significant amount of time and money to learn and recognize the images and process calculations. This can lower the accuracy of the diagnosis since it depends on the performance of the equipment. To solve this problem, this paper will propose a health risk detection and classification model using multi-model-based image channel expansion and visual pattern shaping. The proposed method expands the channels of breast ultrasound images and detects tumors quickly and accurately through the YOLO model. In order to reduce the amount of computation to enable rapid diagnosis of the detected tumors, the model reduces the dimensions of the data by normalizing the visual information and use them as an input for the RNN model to diagnose breast cancer. When the channels were expanded through the proposed brightness smoothing and visual pattern shaping, the accuracy was the highest at 94.9%. Based on the images generated, the study evaluated the breast cancer diagnosis performance. The results showed that the accuracy of the proposed model was 97.3%, CRNN 95.2%, VGG 93.6%, AlexNet 62.9%, and GoogleNet 75.3%, confirming that the proposed model had the best performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jie Fang ◽  
QingBiao Zhou ◽  
Shuxia Wang

To solve the problems of rough edge and poor segmentation accuracy of traditional neural networks in small nucleus image segmentation, a nucleus image segmentation technology based on U-Net network is proposed. First, the U-Net network is used to segment the nucleus image, which stitches the feature images in the channel dimension to achieve feature fusion, and the skip structure is used to combine the low- and high-level features. Then, the subregional average pooling is proposed to improve the global average pooling in the attention module, and an attention channel expansion module is designed to improve the accuracy of image segmentation. Finally, the improved attention module is integrated into the U-Net network to achieve accurate segmentation of the nuclear image. Based on the Python platform, the experimental results show that the proposed segmentation technology can achieve fast convergence, and the mean intersection over union (MIoU) is 85.02%, which is better than other comparison technologies and has a good application prospect.


2021 ◽  
Author(s):  
Yutong Wu ◽  
Yujian Ding ◽  
Xiuyuan Yao ◽  
Jiangong Ma ◽  
Hengxin He ◽  
...  

Author(s):  
Chunmei Li ◽  
Tingxu Zhou ◽  
Ming Yan ◽  
Shasha Cheng ◽  
Yun Wang ◽  
...  

Developing the modified carbon nitride (CN) with multi-bonding mode remains a pivotal challenge for the high-efficiency photocatalytic hydrogen evolution (PHE). Here, we fabricate a PYM-CN photocatalyst by doping pyrimethamine (PYM)...


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Nasrin Hassanpour ◽  
Ali Hosseinzadeh Dalir ◽  
Arnau Bayon ◽  
Milad Abdollahpour

Pressure fluctuations are a key issue in hydraulic engineering. However, despite the large number of studies on the topic, their role in spatial hydraulic jumps is not yet fully understood. The results herein shed light on the formation of eddies and the derived pressure fluctuations in stilling basins with different expansion ratios. Laboratory tests are conducted in a horizontal rectangular flume with 0.5 m width and 10 m length. The range of approaching Froude numbers spans from 6.4 to 12.5 and the channel expansion ratios are 0.4, 0.6, 0.8, and 1. The effects of approaching flow conditions and expansion ratios are thoroughly analyzed, focusing on the dimensionless standard deviation of pressure fluctuations and extreme pressure fluctuations. The results reveal that these variables show a clear dependence on the Froude number and the distance to the hydraulic jump toe. The maximum values of extreme pressure fluctuations occur in the range 0.609<X<3.385, where X is dimensionless distance from the toe of the hydraulic jump, which makes it highly advisable to reinforce the bed of stilling basins within this range.


Sign in / Sign up

Export Citation Format

Share Document