immunomodulatory gene
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 29 ◽  
pp. S12
Author(s):  
E. Grigsby ◽  
M. Rickam ◽  
D. Thewlis ◽  
L. Simon ◽  
R. Chavez ◽  
...  

2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Lovya George ◽  
Heather Menden ◽  
Sheng Xia ◽  
Wei Yu ◽  
Anne Holmes ◽  
...  

2020 ◽  
Author(s):  
Paul McCusker ◽  
Claudia M. Rohr ◽  
John D. Chan

AbstractControl of the neglected tropical disease schistosomiasis relies almost entirely on praziquantel (PZQ) monotherapy. How PZQ clears parasite infections remains poorly understood. Many studies have examined the effects of PZQ on worms cultured in vitro, observing outcomes such as muscle contraction. However, conditions worms are exposed to in vivo may vary considerably from in vitro experiments given the short half-life of PZQ and the importance of host immune system engagement for drug efficacy in animal models. Here, we investigated the effects of in vivo PZQ exposure on Schistosoma mansoni. Measurement of pro-apoptotic caspase activation revealed that worm death occurs only after parasites shift from the mesenteric vasculature to the liver, peaking 24 hours after drug treatment. This indicates that PZQ is not directly schistocidal, since the drug’s half-life is ∼2 hours, and focuses attention on parasite interactions with the host immune system following the shift of worms to the liver. RNA-Seq of worms harvested from mouse livers following sub-lethal PZQ treatment revealed drug-evoked changes in the expression of putative immunomodulatory and anticoagulant gene products. Several of these gene products localized to the schistosome esophagus and may be secreted into the host circulation. These include several Kunitz-type protease inhibitors, which are also found in the secretomes of other blood feeding animals. These transcriptional changes may reflect mechanisms of parasite immune-evasion in response to chemotherapy, given the role of complement-mediated attack and the host innate / humoral immune response in parasite elimination. One of these isoforms, SmKI-1, has been shown to exhibit immunomodulatory and anti-coagulant properties. These data provide insight into the effect of in vivo PZQ exposure on S. mansoni, and the transcriptional response of parasites to the stress of chemotherapy.Author SummaryThe disease schistosomiasis is caused by parasitic worms that live within the circulatory system. While this disease infects over 200 million people worldwide, treatment relies almost entirely on one drug, praziquantel, whose mechanism is poorly understood. In this study, we analyzed the effects of praziquantel treatment on the gene expression of parasites harvested from mice treated with praziquantel chemotherapy. Despite the rapid action of the drug on worms in vitro, we found that key outcomes in vivo (measurement of cell death and changes in gene expression) occurred relatively late (12+ hours after drug administration). We found that worms increased the expression of immunomodulatory gene products in response to praziquantel, including a Kunitz-type protease inhibitor that localized to the worm esophagus and may be secreted to the external host environment. These are an intriguing class of proteins, because they display anti-coagulant and immunomodulatory properties. Up-regulation of these gene products may reflect a parasite mechanism of immune-evasion in response to chemotherapy. This research provides insight into the mechanism of praziquantel by observing the effect of this drug on worms within the context of the host immune system.


2019 ◽  
Vol 3 (s1) ◽  
pp. 155-155
Author(s):  
Jordan Matthew Spatz ◽  
Ming Ru Wu ◽  
Karen Weisinger ◽  
Tim Lu ◽  
Manish Aghi

OBJECTIVES/SPECIFIC AIMS: Glioblastoma (GBM) is a brain cancer with a devastatingly short overall survival of under two years. The poor prognosis of GBM is largely due to cell invasion and maintenance of cancer initiating cells that evade the brain’s innate and adaptive immune responses which enables escape from surgical resection and drives inevitable recurrence. While targeting the brain’s immune microenvironment has long been proposed as a strategy for treating GBM, translational progress has been slow, underscoring the need to investigate the brain’s immune microenvironment for therapeutic avenues. METHODS/STUDY POPULATION: Recent advancements in tunable synthetic immunomodulatory gene circuits targeting metastatic cancers has demonstrated the novel ability to use engineering principles to induce infiltrative cancer cells to express combinatorial immunomodulatory outputs that enable T-cell killing4. Our central hypothesis is: we will be able to significantly improve survival with a lasting immune-mediated control of GBM by using synthetic immunomodulatory gene circuits driving GBM cells to express a local combination of immunomodulatory proteins: human IL15, a surface T-cell engager, PD-L1-CD3 bispecific antibody, and the protein, LIGHT (TNFRSF14). Importantly, the co-expression of LIGHT and anti-PD-L1 therapies was recently shown to rescue PD-L1 checkpoint blockage in the preclinical models of brain tumors and significant enhance survival outcomes highlighting the benefits of novel combinations of immunomodulatory proteins for treatment of GBM. To identify genes whose expression is dramatically upregulated in GBM compared to normal human brain cells, a pooled of six thousand lentiviral oncogene promoters that drive expression of a red-fluorescent protein has been infected into three human GBM cell lines. RESULTS/ANTICIPATED RESULTS: We have successfully infected our GBM cells and are preparing samples for next generation DNA sequencing to determine highly active promoters in GBM that are not expressed in multiple normal brain cells types, astrocytes and neurons. These chosen promoters will then be used to drive an AND gate logic gene circuit immunotherapy outputs which is currently under development for both in-vitro and in-vivo experiments. DISCUSSION/SIGNIFICANCE OF IMPACT: We anticipate that local expression of multiple immune effectors proteins will significantly enhance tumor control and survival in both synergistic murine and human-murine xenograft pre-clinical models of GBM. Ultimately, our goal is to rapidly translate this technology advance into the clinical trial for adult GBM patients.


Vaccine ◽  
2018 ◽  
Vol 36 (31) ◽  
pp. 4708-4715 ◽  
Author(s):  
Pravesh D. Kara ◽  
Arshad S. Mather ◽  
Alri Pretorius ◽  
Thireshni Chetty ◽  
Shawn Babiuk ◽  
...  

Cell ◽  
2017 ◽  
Vol 171 (5) ◽  
pp. 1138-1150.e15 ◽  
Author(s):  
Lior Nissim ◽  
Ming-Ru Wu ◽  
Erez Pery ◽  
Adina Binder-Nissim ◽  
Hiroshi I. Suzuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document