nucleotide sugar transporters
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Edyta Skurska ◽  
Bożena Szulc ◽  
Dorota Maszczak-Seneczko ◽  
Maciej Wiktor ◽  
Wojciech Wiertelak ◽  
...  

Abstract Mutations in the SLC35C1 gene, encoding the Golgi GDP-fucose transporter, cause leukocyte adhesion deficiency II (LADII). Fucosylation improvement in LADII patients treated with fucose suggests the existence of an SLC35C1-independent route of GDP-fucose transport, which still remains a mystery. Here, we developed and characterized a human cell-based model deficient in the SLC35C1 activity. The knockout cells displayed low but detectable levels of fucosylation. Strikingly, the fucosylation defect was almost completely reversed upon treatment with millimolar concentrations of fucose. Even if fucose was supplemented at nanomolar concentrations, it was still incorporated into glycans by the knockout cells. We also found that the SLC35C1-independent transport preferred the salvage pathway over the de novo pathway as a source of GDP-fucose. Our results imply that the Golgi systems of GDP-fucose transport discriminate between the substrate pools obtained from different metabolic pathways, which suggests a functional connection between nucleotide sugar transporters and nucleotide sugar synthetases.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0249905
Author(s):  
Shivani Ahuja ◽  
James Cahill ◽  
Kimberly Hartfield ◽  
Matthew R. Whorton

Nucleotide-sugar transporters (NSTs) transport nucleotide-sugar conjugates into the Golgi lumen where they are then used in the synthesis of glycans. We previously reported crystal structures of a mammalian NST, the CMP-sialic acid transporter (CST) (Ahuja and Whorton 2019). These structures elucidated many aspects of substrate recognition, selectivity, and transport; however, one fundamental unaddressed question is how the transport activity of NSTs might be physiologically regulated as a means to produce the vast diversity of observed glycan structures. Here, we describe the discovery that an endogenous methylated form of cytidine monophosphate (m5CMP) binds and inhibits CST. The presence of m5CMP in cells results from the degradation of RNA that has had its cytosine bases post-transcriptionally methylated through epigenetic processes. Therefore, this work not only demonstrates that m5CMP represents a novel physiological regulator of CST, but it also establishes a link between epigenetic control of gene expression and regulation of glycosylation.


2020 ◽  
Vol 11 ◽  
Author(s):  
Jonathan Celiz-Balboa ◽  
Asier Largo-Gosens ◽  
Juan Pablo Parra-Rojas ◽  
Verónica Arenas-Morales ◽  
Pablo Sepulveda-Orellana ◽  
...  

Nucleotide sugar transporters (NSTs) are Golgi-localized proteins that play a role in polysaccharide biosynthesis by transporting substrates (nucleotide sugars) from the cytosol into the Golgi apparatus. In Arabidopsis, there is an NST subfamily of six members, called URGTs, which transport UDP-rhamnose and UDP-galactose in vitro. URGTs are very similar in protein sequences, and among them, URGT1 and URGT2 are highly conserved in protein sequence and also showed very similar kinetic parameters toward UDP-rhamnose and UDP-galactose in vitro. Despite the similarity in sequence and in vitro function, mutants in urgt1 led to a specific reduction in galactose in rosette leaves. In contrast, mutants in urgt2 showed a decrease in rhamnose content in soluble mucilage from seeds. Given these specific and quite different chemotypes, we wonder whether the differences in gene expression could explain the observed differences between the mutants. Toward that end, we analyzed whether URGT2 could rescue the urgt1 phenotype and vice versa by performing a promoter swapping experiment. We analyzed whether the expression of the URGT2 coding sequence, controlled by the URGT1 promoter, could rescue the urgt1 rosette phenotype. A similar strategy was used to determine whether URGT1 could rescue the urgt2 mucilage phenotype. Expression analysis of the swapped genes, using qRT-PCR, was similar to the native URGT1 and URGT2 genes in wild-type plants. To monitor the protein expression of the swapped genes, both URGTs were tagged with green fluorescent protein (GFP). Confocal microscopy analyses of the swapped lines containing URGT2-GFP showed fluorescence in motile dot-like structures in rosette leaves. Swapped lines containing URGT1-GFP showed fluorescence in dot-like structures in the seed coat. Finally, the expression of URGT2 in urgt1 mutants rescued galactose reduction in rosette leaves. In the same manner, the expression of URGT1 in urgt2 mutants recovered the content of rhamnose in soluble mucilage. Hence, our results showed that their expression in different organs modulates the role in vivo of URGT1 and URGT2. Likely, this is due to their presence in different cellular contexts, where other proteins, acting in partnership, may drive their functions toward different pathways.


2020 ◽  
Vol 295 (48) ◽  
pp. 16445-16463 ◽  
Author(s):  
Bozena Szulc ◽  
Paulina Sosicka ◽  
Dorota Maszczak-Seneczko ◽  
Edyta Skurska ◽  
Auhen Shauchuk ◽  
...  

Nucleotide sugar transporters, encoded by the SLC35 gene family, deliver nucleotide sugars throughout the cell for various glycosyltransferase-catalyzed glycosylation reactions. GlcNAc, in the form of UDP-GlcNAc, and galactose, as UDP-Gal, are delivered into the Golgi apparatus by SLC35A3 and SLC35A2 transporters, respectively. However, although the UDP-Gal transporting activity of SLC35A2 has been clearly demonstrated, UDP-GlcNAc delivery by SLC35A3 is not fully understood. Therefore, we analyzed a panel of CHO, HEK293T, and HepG2 cell lines including WT cells, SLC35A2 knockouts, SLC35A3 knockouts, and double-knockout cells. Cells lacking SLC35A2 displayed significant changes in N- and O-glycan synthesis. However, in SLC35A3-knockout CHO cells, only limited changes were observed; GlcNAc was still incorporated into N-glycans, but complex type N-glycan branching was impaired, although UDP-GlcNAc transport into Golgi vesicles was not decreased. In SLC35A3-knockout HEK293T cells, UDP-GlcNAc transport was significantly decreased but not completely abolished. However, N-glycan branching was not impaired in these cells. In CHO and HEK293T cells, the effect of SLC35A3 deficiency on N-glycan branching was potentiated in the absence of SLC35A2. Moreover, in SLC35A3-knockout HEK293T and HepG2 cells, GlcNAc was still incorporated into O-glycans. However, in the case of HepG2 cells, no qualitative changes in N-glycans between WT and SLC35A3 knockout cells nor between SLC35A2 knockout and double-knockout cells were observed. These findings suggest that SLC35A3 may not be the primary UDP-GlcNAc transporter and/or different mechanisms of UDP-GlcNAc transport into the Golgi apparatus may exist.


2020 ◽  
Author(s):  
Shivani Ahuja ◽  
James Cahill ◽  
Kimberly Hartfield ◽  
Matthew R. Whorton

AbstractNucleotide-sugar transporters (NSTs) transport nucleotide-sugar conjugates into the Golgi lumen where they are then used in the synthesis of glycans. We previously reported crystal structures of a mammalian NST, the CMP-sialic acid transporter (CST) (Ahuja and Whorton 2019). These structures elucidated many aspects of substrate recognition, selectivity, and transport; however, one fundamental unaddressed question is how the transport activity of NSTs might be physiologically regulated as a means to produce the vast diversity of observed glycan structures. Here, we describe the discovery that an endogenous methylated form of cytidine monophosphate (m5CMP) binds and inhibits CST. The presence of m5CMP in cells results from the degradation of RNA that has had its cytosine bases post-transcriptionally methylated through epigenetic processes. Therefore, this work not only demonstrates that m5CMP represents a novel physiological regulator of CST, but it also establishes a link between epigenetic control of gene expression and regulation of glycosylation.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Joanne L. Parker ◽  
Robin A. Corey ◽  
Phillip J. Stansfeld ◽  
Simon Newstead

Abstract Nucleotide sugars are the activated form of monosaccharides used by glycosyltransferases during glycosylation. In eukaryotes the SLC35 family of solute carriers are responsible for their selective uptake into the Endoplasmic Reticulum or Golgi apparatus. The structure of the yeast GDP-mannose transporter, Vrg4, revealed a requirement for short chain lipids and a marked difference in transport rate between the nucleotide sugar and nucleoside monophosphate, suggesting a complex network of regulatory elements control transport into these organelles. Here we report the crystal structure of the GMP bound complex of Vrg4, revealing the molecular basis for GMP recognition and transport. Molecular dynamics, combined with biochemical analysis, reveal a lipid mediated dimer interface and mechanism for coordinating structural rearrangements during transport. Together these results provide further insight into how SLC35 family transporters function within the secretory pathway and sheds light onto the role that membrane lipids play in regulating transport across the membrane.


Sign in / Sign up

Export Citation Format

Share Document