dimensionless entropy generation
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2015 ◽  
Vol 20 (4) ◽  
pp. 787-804 ◽  
Author(s):  
R.S.R. Gorla ◽  
B.J. Gireesha

Abstract An analysis has been provided to determine the transient velocity and steady state entropy generation in a microfluidic Couette flow influenced by electro-kinetic effect of charged nanoparticles. The equation for calculating the Couette flow velocity profile is derived for transient flow. The solutions for momentum and energy equations are used to get the exact solution for the dimensionless velocity ratio and dimensionless entropy generation number. The effects of the dimensionless entropy generation number, Bejan number, irreversibility ratio, entropy generation due to fluid friction and due to heat transfer on dimensionless time, relative channel height, Brinkman number, dimensionless temperature ratio, nanoparticle volume fraction are analyzed.



2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Tong-Bou Chang

The effects of wall suction on the entropy generation rate in a two-dimensional steady film condensation flow on a horizontal tube are investigated theoretically. In analyzing the liquid flow, the effects of both the gravitational force and the viscous force are taken into account. In addition, a film thickness reduction ratio,Sf, is introduced to evaluate the effect of wall suction on the thickness of the condensate layer. The analytical results show that, the entropy generation rate depends on the Jakob number Ja, the Rayleigh number Ra, the Brinkman number Br, the dimensionless temperature differenceψ, and the wall suction parameterSw. In addition, it is shown that in the absence of wall suction, a closed-form correlation for the Nusselt number can be derived. Finally, it is shown that the dimensionless entropy generation due to heat transfer,NT, increases with an increasing suction parameterSw, whereas the dimensionless entropy generation due to liquid film flow friction,NF, decreases.



2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
M. H. Yazdi ◽  
I. Hashim ◽  
A. Fudholi ◽  
P. Ooshaksaraei ◽  
K. Sopian

In the present study, the first and second law analyses of power-law non-Newtonian flow over embedded open parallel microchannels within micropatterned permeable continuous moving surface are examined at prescribed surface temperature. A similarity transformation is used to reduce the governing equations to a set of nonlinear ordinary differential equations. The dimensionless entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient, and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by Dormand-Prince pair and shooting method. Finally, the entropy generation numbers, as well as the Bejan number, are evaluated. It is noted that the presence of the shear thinning (pseudoplastic) fluids creates entropy along the surface, with an opposite effect resulting from shear thickening (dilatant) fluids.



Author(s):  
L. Y. Tan ◽  
G. M. Chen

Entropy generation is tied to the exergy destroyed. Hence, the amount of entropy generation is of primary concern as it is related to unavailable work. Viscous dissipation is a form of heat generation due to work done by viscous forces. Its effect on the velocity and temperature profiles would have affected the entropy generation. In this work, second law analysis is carried out on a microchannel between parallel plates for a power-law fluid. The governing energy equation for a rectangular microchannel is first solved analytically. Analytical expression is obtained for the dimensionless entropy generation and Bejan number. Dimensionless entropy generation due to fluid flow irreversibility and heat transfer irreversibility are also computed and compared. The distribution of entropy generation due to heat transfer irreversibility and fluid friction irreversibility changes as Brinkman number increases. A comparison with a previous literature on a circular pipe for the same Brinkman number reveals that the total dimensionless entropy generation in parallel plate is more than the corresponding value in circular pipe. However, the Bejan number for a parallel plate is lower than a circular pipe.



2011 ◽  
Vol 15 (2) ◽  
pp. 423-435 ◽  
Author(s):  
Delavar Aghajani ◽  
Mousa Farhadi ◽  
Kurosh Sedighi

In this paper Lattice Boltzmann Method (LBM) was employed for investigation the effect of the heater location on flow pattern, heat transfer and entropy generation in a cavity. A 2D thermal lattice Boltzmann model with 9 velocities, D2Q9, is used to solve the thermal flow problem. The simulations were performed for Rayleigh numbers from 103 to 106 at Pr = 0.71. The study was carried out for heater length of 0.4 side wall length which is located at the right side wall. Results are presented in the form of streamlines, temperature contours, Nusselt number and entropy generation curves. Results show that the location of heater has a great effect on the flow pattern and temperature fields in the enclosure and subsequently on entropy generation. The dimensionless entropy generation decreases at high Rayleigh number for all heater positions. The ratio of averaged Nusselt number and dimensionless entropy generation for heater located on vertical and horizontal walls was calculated. Results show that higher heat transfer was observed from the cold walls when the heater located on vertical wall. On the other hand, heat transfer increases from the heater surface when it located on the horizontal wall.



Sign in / Sign up

Export Citation Format

Share Document