scholarly journals Brain Tumour Detection Using Image Segmentation: A Review

Author(s):  
Miss Kashmira. A. Kulkarni

Abstract: Medical Image Processing is one of the most challenging and emerging fields. MRI, CT scan , ultra scan, X-rays etc. are different machines to diagnose the condition of the patient. Human body is made up of several types of cells. Brain is a highly specialized and sensitive organ of human body. Brain tumour is one of the severe problems in the medical science. MRI imaging is often used when treating brain tumour. There are various image segmentation algorithms in order to detect brain tumour using image processing. Firstly quality of scanned MRI image is enhanced and then different image segmentation techniques are applied to detect the tumour in the scanned image. Different segmentation methods reviewed here are thresholding, kmeans, watershed, edge detection, morphological, fuzzy c-means. Here sample 5 MRI images are taken and processed by using MATLAB software. With the help of these techniques, area of the tumour, execution time, number pixel can be determined. Keywords: MATLAB, segmentation, thresholding , kmeans, watershed, edge detection, morphological, fuzzy c-means.

Author(s):  
P. Sankar Ganesh ◽  
T. Selva Kumar ◽  
Mukesh Kumar ◽  
Mr. S. Rajesh Kumar

At present, processing of medical images is a developing and important field. It includes many different types of imaging methods. Some of them are Computed Tomography scans (CT scans), X-rays and Magnetic Resonance Imaging (MRI) etc. These technologies allow us to detect even the smallest defects in the human body. Abnormal growth of tissues in the brain which affect proper brain functions is considered as a brain tumor. The main goal of medical image processing is to identify accurate and meaningful information using images with the minimum error possible. MRI is mainly used to get images of the human body and cancerous tissues because of its high resolution and better quality images compared with other imaging technologies. Brain tumor identifications through MRI images is a difficult task because of the complexity of the brain. MRI images can be processed and the brain tumor can be segmented. These tumors can be segmented using various image segmentation techniques. The process of identifying brain tumors through MRI images can be categorized into four different sections; pre-processing, image segmentation, feature extraction and image classification.


Author(s):  
Shouvik Chakraborty ◽  
Mousomi Roy ◽  
Sirshendu Hore

Image segmentation is one of the fundamental problems in image processing. In digital image processing, there are many image segmentation techniques. One of the most important techniques is Edge detection techniques for natural image segmentation. Edge is a one of the basic feature of an image. Edge detection can be used as a fundamental tool for image segmentation. Edge detection methods transform original images into edge images benefits from the changes of grey tones in the image. The image edges include a good number of rich information that is very significant for obtaining the image characteristic by object recognition and analyzing the image. In a gray scale image, the edge is a local feature that, within a neighborhood, separates two regions, in each of which the gray level is more or less uniform with different values on the two sides of the edge. In this paper, the main objective is to study the theory of edge detection for image segmentation using various computing approaches.


Author(s):  
Kamlesh Sharma ◽  
Nidhi Garg

Image processing is the use of algorithms to perform various operations on digital images. The techniques that are explained further are image segmentation and image enhancement. Image Segmentation is a method to partition an image into multiple segments, to change the presentation of an image into something more meaningful and easier to analyze. The current image segmentation techniques include region-based segmentation and edge detection segmentation. Image Enhancement is the process of improving the quality of image. Under this section there are two broad divisions- Spatial Domain Technique and Frequency Domain Technique.


Edge detection is most important technique in digital image processing. It play an important role in image segmentation and many other applications. Edge detection providesfoundation to many medical and military applications.It difficult to generate a generic code for edge detection so many kinds ofalgorithms are available. In this article 4 different approaches Global image enhancement with addition (GIEA), Global image enhancement with Multiplication (GIEM),Without Global image enhancement with Addition (WOGIEA),and without Global image enhancement with Multiplication (WOGIEM)for edge detection is proposed. These algorithms are validatedon 9 different images. The results showthat GIEA give us more accurate results as compare to other techniques.


Author(s):  
Abahan Sarkar ◽  
Ram Kumar

In day-to-day life, new technologies are emerging in the field of Image processing, especially in the domain of segmentation. Image segmentation is the most important part in digital image processing. Segmentation is nothing but a portion of any image and object. In image segmentation, the digital image is divided into multiple set of pixels. Image segmentation is generally required to cut out region of interest (ROI) from an image. Currently there are many different algorithms available for image segmentation. This chapter presents a brief outline of some of the most common segmentation techniques (e.g. Segmentation based on thresholding, Model based segmentation, Segmentation based on edge detection, Segmentation based on clustering, etc.,) mentioning its advantages as well as the drawbacks. The Matlab simulated results of different available image segmentation techniques are also given for better understanding of image segmentation. Simply, different image segmentation algorithms with their prospects are reviewed in this chapter to reduce the time of literature survey of the future researchers.


2018 ◽  
Vol 2 (2) ◽  
pp. 13-23
Author(s):  
Matheus Alvian Wikanargo ◽  
Angelina Pramana Thenata

The lungs are one of the important and vital organs in the body that function as a respiratory system process. One way to detect lung disease is to do an X-rays test. Chest X-ray is a radiographic projection to detect abnormalities in lung organ by using x-ray radiation. In the process of diagnosing, doctors see the condition of the results of Chest X-rays in the form of a thorax image (chest) to know the patient has an abnormal or normal lung. However, doctors' diagnosis of chest X-rays results-based abnormalities is likely to differ depending on the doctor's abilities and experience. This problem is expected to be solved by segmenting the lung image to help make the diagnosis appropriately. The purpose of this study is to conduct an analysis that can differentiate abnormal and normal lungs. The process of recognition of these patterns consists of the pre-processing stage of image segmentation by using morphology and then proceed to grouping by using fuzzy c-means method to express the pattern of the already segmented image. This research produces normal and abnormal lung images that can be identified with an accuracy of 80%.


Author(s):  
Dr. Kamlesh Sharma ◽  
◽  
Nidhi Garg ◽  

Image processing is the use of algorithms to perform various operations on digital images. The techniques that are explained further are image segmentation and image enhancement. Image Segmentation is a method to partition an image into multiple segments, to change the presentation of an image into something more meaningful and easier to analyze. The current image segmentation techniques include region-based segmentation and edge detection segmentation. Image Enhancement is the process of improving the quality of image. Under this section there are two broad divisions- Spatial Domain Technique and Frequency Domain Technique.


2021 ◽  
Vol 20 (1) ◽  
pp. 77-86
Author(s):  
Raiyan Islam ◽  
Shihab Uddin ◽  
Jamil Mahmud Sakib ◽  
Md. Shariful Islam ◽  
Tanvir Ahmed

Modern-day medical activities and disease recognition systems are mostly based on the usage of modern technologies. Image processing system is one of the most usable and highly valuable technologies which is used in numerous amount of disease detection process. In this paper, a review will be given based on detecting several infectious and cancerous diseases of different organs in a human body through applying different types of image processing techniques. Image processing system consists of several numbers of image processing techniques which apply to a different category of data and resources. The infectious diseases in a human body possess a certain amount of area in any organ of a human body. Modern medical science of these days is very much advanced that x-ray images, CT or MRI scan images can provide a digital image of a human figure and with the help of these images infections can easily be detected by applying image processing techniques to make sure certain region is affected. A detailed overview will be provided in this review that are the most used image processing techniques to get accurate results on detecting different types of infectious diseases. 


Sign in / Sign up

Export Citation Format

Share Document