outer contact
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 62 (5) ◽  
pp. 12-28
Author(s):  
Niem Van Nguyen ◽  
Dung Tien Nguyen ◽  
Duan Tran ◽  
Tu Trong Mai ◽  
Nguyen Duc Do ◽  
...  

Based on the research results on petrographic - mineralogical characteristics, tectonic structural features, geochemistry of major and trace elements of the bedrock, alternative rock, ore, soil, mineralogical geochemistry, mineral facies, inclusions, the origin of ore formation related to oxidized granite and skarnoid - typed metasomatic process in Kon Ra copper ore field have been identified. Petrological and mineral characteristics indicate the process of transitional metasomatism between the skarn and hornfels, also known as bimetasomatic stage (skarnoid deposit type). Diopxite represents the Progade skarnoid stage. Tremolite, actinolite, quartz, chlorite, magnetite, molybdenite, less of chalcopyrite, pyrrhotite, and pyrite indicate the retrogade skarnoid stage. The following is sulfide - quartz stage (major minerals include: quartz, chalcopyrite, pyrite, pyrrhotite, molybdenite). This result is also consistent with the formation temperature 210÷270 0C and the geochemical zoning of elements from intrusive blocks through the outer contact zone that contains the ore and surrounding rocks are as follows: Cu, Zn, Ca (the zone has lime-rich formations), Fe3+, Mo increases in the outer contact zone containing ore closed to acid intrusive rocks. Inversely, the ratios of Pb/Cu, Zn/Cu, and As content increased in the alteration from this zone to the outer one. In addition, uranium mineralization is associated with a later magma stage (pegmatite granite in endo-contact is high uranium radiation: U = 0.17÷0.2%, 3,420,000÷8,020,000 µR/h and contains uraninite).


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 68
Author(s):  
Andrei Y. Barkov ◽  
Andrey A. Nikiforov ◽  
Larisa P. Barkova ◽  
Vladimir N. Korolyuk ◽  
Robert F. Martin

The lopolithic Pados-Tundra layered complex, the largest member of the Serpentinite belt–Tulppio belt (SB–TB) megastructure in the Fennoscandian Shield, is characterized by (1) highly magnesian compositions of comagmatic dunite–harzburgite–orthopyroxenite, with primitive levels of high-field-strength elements; (2) maximum values of Mg# in olivine (Ol, 93.3) and chromian spinel (Chr, 57.0) in the Dunite block (DB), which exceed those in Ol (91.7) and Chr (42.5) in the sills at Chapesvara, and (3) the presence of major contact-style chromite–IPGE-enriched zones hosted by the DB. A single batch of primitive, Al-undepleted komatiitic magma crystallized normally as dunite close to the outer contact, then toward the center. A similar magma gave rise to Chapesvara and other suites of the SB–TB megastructure. Crystallization proceeded from the early Ol + Chr cumulates to the later Ol–Opx and Opx cumulates with accessory Chr in the Orthopyroxenite zone. The accumulation of Chr resulted from efficient cooling along boundaries of the Dunite block. The inferred front of crystallization advanced along a path traced by vectors of Ol and Chr compositions. Grains and aggregates of Chr were mainly deposited early after the massive crystallization of olivine. Chromium, Al, Zn and H2O, all incompatible in Ol, accumulated to produce podiform segregations or veins of chromitites. This occurred episodically along the moving front of crystallization. Crystallization occurred rapidly owing to heat loss at the contact and to a shallow level of emplacement. The Chr layers are not continuous but rather heterogeneously distributed pods or veins of Chr–Ol–clinochlore segregations. Isolated portions of melt enriched in H2O and ore constituents accumulated during crystallization of Ol. Levels of fO2 in the melt and, consequently, the content of ferric iron in Chr, increased progressively, as in other intrusions of the SB–TB megastructure. The komatiitic magma vesiculated intensely, which led to a progressive loss of H2 and buildup in fO2. In turn, this led to the appearance of anomalous Chr–Ilm parageneses. Diffuse rims of Chr grains, abundant in the DB, contain elevated levels of Fe3+ and enrichments in Ni and Mn. In contrast, Zn is preferentially partitioned into the core, leading to a decoupling of Zn from Mn, also known at Chapesvara. The sulfide species display a pronounced Ni-(Co) enrichment in assemblages of cobaltiferous pentlandite, millerite (and heazlewoodite at Khanlauta), deposited at ≤630 °C. The oxidizing conditions have promoted the formation of sulfoselenide phases of Ru in the chromitites. The attainment of high degrees of oxidation during crystallization of a primitive parental komatiitic magma accounts for the key characteristics of Pados-Tundra and related suites of the SB–TB megastructure.


2019 ◽  
Vol 27 (1) ◽  
pp. 4-18
Author(s):  
A. G. Simakin ◽  
E. V. Kislov ◽  
T. P. Salova ◽  
O. Yu. Shaposhnikova ◽  
A. N. Nekrasov

The paper presents newly obtained geochemical data on outer-contact rocks and carbonatereplacement skarns of the Yoko-Dovyren layered ultramafic-mafic intrusion in the northern Baikal area. The rocks initially contained CO2-rich fluid with a high oxygen fugacity (up to NNO + 3–4), which was generated by the partial decomposition of dolomite and by reactions between SiO2 and carbonates. The skarn blue diopside is enriched in Pt (up to 0.2 ppm) and V (300 ppm), and the wollastonite zone of the skarns contains elevated Re concentrations (up to 0.4 ppm). The REE pattern of the contact-zone quartzite is identical to the REE patterns of phlogopite-bearing lherzolites from the lower contact part of the Yoko-Dovyren massif. These geochemical features of the rocks of the intrusion may be explained by the transfer and redeposition of material by reduced H2O-CO2 fluid. According to thermodynamic calculations, a reaction between H2O-CO2 fluid and high-Mg olivine at a subsolidus temperature of T = 950оC and pressure P = 2 kbar should result in a decrease in the oxygen fugacity to QFM – 2 and, hence, generate much CO. According to the calculations, a low oxygen fugacity (close to QFM + 0.7) can also be maintained by pyrrhotite oxidation with H2O and CO2 fluid components under cumulus P-T parameters. As a result of these reactions, the fluid should enrich in Pt extracted from magmatic sulfides, and this Pt can be redeposited in rocks, including those composing the skarn zones.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 711
Author(s):  
Siya Lozanova ◽  
Ivan Kolev ◽  
Avgust Ivanov ◽  
Chavdar Roumenin

A new 2D (two-dimensional) in-plane sensitive Hall-effect sensor comprising two identical n-Si Greek-crosses is presented. Each of the crosses contains one central square contact and, symmetrically to each of their four sides, an outer contact is available. Outer electrode from one configuration is connected with the respective opposite contact from the other configuration, thus forming four parallel three-contact (3C) Hall elements. These original connections provide pairs of opposite supply currents in each of the cross-Hall structure. Also the obligatory load resistors in the outer contacts of 3С Hall elements are replaced by internal resistances of crosses themselves. The samples have been implemented by IC technology, using four masks. The magnetic field is parallel to the structures’ plane. The couples of opposite contacts of each Greek-cross are the outputs for the two orthogonal components of the magnetic vector at sensitivities S ≈ 115 V/AT whereas the cross-talk is very promising, reaching no more than 2.4%. The mean lowest detected magnetic induction B at a supply current Is = 3 mA over the frequency range f ≤ 500 Hz at a signal to noise ratio equal to unity, is Bmin ≈ 14 μT.


Author(s):  
Xin Zhang ◽  
Shouwen Fan

A novel method for the design of discretionary N-lobed pitch curve and intermittent N-lobed pitch curve is presented. And a general formulation for classification identification model of the pitch curve with nondifferentiable points for N-lobed noncircular gear ( N-LNG) is proposed. The formulation is based on the differentiable principle. In particular, the steepest rotation modification model and method of the pitch curve with discontinuous points for any type of N-LNG are established by resorting to fundamentals of the calculus of variations. The modification model can be calculated via the Euler–Lagrange equation, and its conjugate pitch curves which contain outer contact and inner contact can be obtained in general by using the principle of noncircular gear meshing. This identification and modification model and method are implemented in several numerical examples, and simulation results demonstrate that the pitch curve with nondifferentiable points for N-LNG can be effectively identified and modified.


2013 ◽  
pp. 39-45
Author(s):  
Aleksandar Pacevski ◽  
Kristina Saric ◽  
Vladica Cvetkovic

Complex polymetallic Cu-Bi-(Pb-Zn-Co-Ag) mineralization of the Perin Potok locality occurs as disseminations and fine nests in quartz-ankerite-(sericite) veins. The veins are located in metamorphic rocks of the outer contact zone of the Variscan Gornjane Granitoid. The mineralization consists of (in decreasing abundance): chalcopyrite, aikinite, bismuth, galena, Ag,Bi-bearing tetrahedrite, sphalerite, cobaltite and an unnamed Bi2Te mineral. All these phases form distinctive exsolutions and intergrowths and they simultaneously precipitated from a very complex hydrothermal fluid. Silver shows elevated contents in tetrahedrite (3.3-4.4 wt. % Ag), galena (0.9-1.1 wt. % Ag) and in the unnamed Bi2Te mineral (0.9 wt. % Ag). Such high Ag concentrations can imply that Ag minerals could be also present. Minor amounts of rutile showing fine intergrowths with sericite also occur in this paragenesis. This is W-bearing rutile that shows zoning caused by up to 2.2 wt. % W. The studied mineralization is probably genetically related to the Variscan Gornjane Granitoid, although the possibility of derivation from the metamorphic basement should be also taken into account.


Sign in / Sign up

Export Citation Format

Share Document