moving front
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Aidan W. Schiff-Kearn ◽  
Lauren Gingras ◽  
Simon Bernier ◽  
Nima Chamanara ◽  
Kartiek Agarwal ◽  
...  

AbstractRelativistically moving dielectric perturbations can be used to manipulate light in new and exciting ways beyond the capabilities of traditional nonlinear optics. Adiabatic interaction with the moving front modulates the wave simultaneously in both space and time, and manifests a front-induced transition in both wave vector and frequency yielding exotic effects including non-reciprocity and time-reversal. Here we introduce a technique called SLIPSTREAM, Spacetime Light-Induced Photonic STRucturEs for Advanced Manipulation, based on the creation of relativistic fronts in a semiconductor-filled planar waveguide by photoexcitation of mobile charge carriers. In this work, we demonstrate the capabilities of SLIPSTREAM for the manipulation of terahertz (THz) light pulses through relativistic front-induced transitions. In the sub-luminal front velocity regime, we generate temporally stretched THz waveforms, with a quasi-static field lasting for several picoseconds tunable with the front interaction distance. In the super-luminal regime, the carrier front outpaces the THz pulse and a time-reversal operation is performed via a front-induced intra-band transition. We anticipate our platform will be a versatile tool for future applications in the THz spectral band requiring direct and advanced control of light at the sub-cycle level.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 225
Author(s):  
Bin Wang ◽  
Yihui Huang ◽  
Junke Jiao ◽  
Hao Wang ◽  
Ji Wang ◽  
...  

In the present research, an iterative numerical model is proposed to investigate the nanosecond pulsed laser ablation (PLA) mechanism of the DD6 single-crystal superalloy. In the numerical model, two subroutines are introduced to trace the moving boundary and update the thermal load. The iteration between the main governing equation and the two subroutines enables the PLA numerical simulation to consider material moving front and effect of comprehensive heat dissipation including thermal convection and radiation. The basic experimental results exhibit a good agreement with simulation results which indicates the good accuracy of the simulation model. Therefore, the PLA mechanism of the DD6 single-crystal superalloy is studied base on the improved iterative model, which indicates the evolution of temperature field, ablation zone morphology, formation of recast layer and heat-affected zone are closely related with time. The temperature of the laser spot center increases sharply at the first stage, reaching a maximum value of 5252 K, and then decreases gradually. The thermal dissipation postpones the ablation rate but promotes the formation of a recast layer and heat-affected zone. Due to the evaporation and thermal dissipation, the depth of the molten layer exhibits two rapid increasing stages. The comprehensive analysis of the PLA processing by the improved simulation model helps the understanding of the intrinsic mechanism, which would contribute to the further optimizing parameters of PLA fabrication of the DD6 single-crystal superalloy.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 68
Author(s):  
Andrei Y. Barkov ◽  
Andrey A. Nikiforov ◽  
Larisa P. Barkova ◽  
Vladimir N. Korolyuk ◽  
Robert F. Martin

The lopolithic Pados-Tundra layered complex, the largest member of the Serpentinite belt–Tulppio belt (SB–TB) megastructure in the Fennoscandian Shield, is characterized by (1) highly magnesian compositions of comagmatic dunite–harzburgite–orthopyroxenite, with primitive levels of high-field-strength elements; (2) maximum values of Mg# in olivine (Ol, 93.3) and chromian spinel (Chr, 57.0) in the Dunite block (DB), which exceed those in Ol (91.7) and Chr (42.5) in the sills at Chapesvara, and (3) the presence of major contact-style chromite–IPGE-enriched zones hosted by the DB. A single batch of primitive, Al-undepleted komatiitic magma crystallized normally as dunite close to the outer contact, then toward the center. A similar magma gave rise to Chapesvara and other suites of the SB–TB megastructure. Crystallization proceeded from the early Ol + Chr cumulates to the later Ol–Opx and Opx cumulates with accessory Chr in the Orthopyroxenite zone. The accumulation of Chr resulted from efficient cooling along boundaries of the Dunite block. The inferred front of crystallization advanced along a path traced by vectors of Ol and Chr compositions. Grains and aggregates of Chr were mainly deposited early after the massive crystallization of olivine. Chromium, Al, Zn and H2O, all incompatible in Ol, accumulated to produce podiform segregations or veins of chromitites. This occurred episodically along the moving front of crystallization. Crystallization occurred rapidly owing to heat loss at the contact and to a shallow level of emplacement. The Chr layers are not continuous but rather heterogeneously distributed pods or veins of Chr–Ol–clinochlore segregations. Isolated portions of melt enriched in H2O and ore constituents accumulated during crystallization of Ol. Levels of fO2 in the melt and, consequently, the content of ferric iron in Chr, increased progressively, as in other intrusions of the SB–TB megastructure. The komatiitic magma vesiculated intensely, which led to a progressive loss of H2 and buildup in fO2. In turn, this led to the appearance of anomalous Chr–Ilm parageneses. Diffuse rims of Chr grains, abundant in the DB, contain elevated levels of Fe3+ and enrichments in Ni and Mn. In contrast, Zn is preferentially partitioned into the core, leading to a decoupling of Zn from Mn, also known at Chapesvara. The sulfide species display a pronounced Ni-(Co) enrichment in assemblages of cobaltiferous pentlandite, millerite (and heazlewoodite at Khanlauta), deposited at ≤630 °C. The oxidizing conditions have promoted the formation of sulfoselenide phases of Ru in the chromitites. The attainment of high degrees of oxidation during crystallization of a primitive parental komatiitic magma accounts for the key characteristics of Pados-Tundra and related suites of the SB–TB megastructure.


2020 ◽  
Author(s):  
Ryan J. Morris ◽  
Tetyana Sukhodub ◽  
Cait E. MacPhee ◽  
Nicola R. Stanley-Wall

ABSTRACTA hallmark of microbial biofilms is the self-production of extracellular matrix that encases the cells resident within the community. The matrix provides protection from the environment, while spatial heterogeneity of expression influences the structural morphology and colony spreading dynamics. Bacillus subtilis is a model bacterial system used to uncover the regulatory pathways and key building blocks required for biofilm growth and development. Previous reports have suggested that poly-γ-glutamic acid (PGA) production is suppressed during biofilm formation and does not play a major role in biofilm morphology of the undomesticated isolate NCIB 3610. In this work we report on the observation of multiple travelling fronts that develop during the early stage of B. subtilis colony biofilm formation. We find the emergence of a highly motile population of bacteria that is facilitated by the extraction of fluid from the underlying agar substrate. Motility develops behind a moving front of fluid that propagates from the boundary of the biofilm towards the interior. The extent of proliferation is strongly modulated by the presence of extracellular polysaccharides (EPS). We trace the origin of this moving front of fluid to the production of PGA. We find that PGA production is correlated with higher temperatures, resulting in a mature biofilm morphology that is distinct from the biofilm architecture typically associated with B. subtilis. Our results suggest that B. subtilis NCIB 3610 produces distinct biofilm matrices in response to environmental conditions.


2020 ◽  
Author(s):  
Kankan Qin ◽  
Corentin Eschenbrenner ◽  
Felix Ginot ◽  
Dmytro Dedovets ◽  
Thibaud Coradin ◽  
...  

AbstractCryopreservation is the only fully established procedure to extend the lifespan of living cells and tissues, a key to activities spanning from fundamental biology to clinical practice. Despite its prevalence and impact, central aspects of cryopreservation, such as the cell’s physico-chemical environment during freezing, remain elusive. Here we address that question by coupling in situ microscopic directional freezing to visualize cells and their surroundings during freezing with the freezing medium phase diagram. We extract the freezing medium spatial distribution in cryopreservation, providing a tool to describe the cell vicinity at any point during freezing. We show that two major events define the cells’ local environment over time: the interaction with the moving ice front and with the vitreous moving front – a term we introduce here. Our correlative strategy may be applied to cells relevant in clinical research and practice, and help designing new cryoprotective media based on local physico-chemical cues.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 69
Author(s):  
Hirofumi Niiya ◽  
Akinori Awazu ◽  
Hiraku Nishimori

To understand the time evolutions of frontal speed and shape in a low-density granular flow, we propose a simple particle model. This model solves the equation of motion for each particle and simulates the time evolution of low-density granular flow. Spherical particles constituting a low-density granular flow slide on a slope at a steeper angle than the angle of repose. The particle motion is determined based on three forces: gravity as the driving force, repulsive force due to particle collision, and drag force due to the particle interaction through the ambient fluid. Two-dimensional numerical simulations of this model are conducted on the slope: the x–y plane parallel to the slope and the x–z plane perpendicular to the slope. In the x–y plane, particles aggregate at the moving front of the granular flow, and subsequently, flow instability occurs as a wavy pattern. This flow pattern is caused by the interparticle interaction arising from the drag force. Additionally, a vortex convection of particles is formed inside the aggregations. Simultaneously, particle aggregation is also found at the moving front of the granular flow in the x–z plane. The aggregation resembles a head–tail structure, where the frontal angle against the slope approaches 60 ∘ from a larger angle as time progresses. Comparing the numerical result by varying the particle size reveals that the qualitative dynamics of the granular flow are independent of particle size. Although the model is not realistic, our study presents a new particle-based approach that elucidates the dynamics of low-density granular flow.


Authorea ◽  
2020 ◽  
Author(s):  
Natalia LEVASHOVA ◽  
NIKOLAY NEFEDOV ◽  
Andrey Orlov ◽  
Elena Polezhaeva

2019 ◽  
Vol 84 (3) ◽  
pp. 533-554
Author(s):  
Michael Vynnycky ◽  
Sean McKee ◽  
Martin Meere ◽  
Christopher McCormick ◽  
Sean McGinty

Abstract This paper is concerned with a diffusion-controlled moving boundary problem in drug dissolution, in which the moving front passes from one medium to another for which the diffusivity is many orders of magnitude smaller. The classical Neumann similarity solution holds while the front is passing through the first layer, but this breaks down in the second layer. Asymptotic methods are used to understand what is happening in the second layer. Although this necessitates numerical computation, one interesting outcome is that only one calculation is required, no matter what the diffusivity is for the second layer.


Sign in / Sign up

Export Citation Format

Share Document