scholarly journals Mixed Reality Simulation of High-Endurance Unmanned Aerial Vehicle with Dual-Head Electromagnetic Propulsion Devices for Earth and Other Planetary Explorations

2020 ◽  
Vol 10 (11) ◽  
pp. 3736
Author(s):  
Ashish Kumar ◽  
Sugjoon Yoon ◽  
V.R.Sanal Kumar

One of the major limitations of existing unmanned aerial vehicles is limited flight endurance. In this study, we designed an innovative uninterrupted electromagnetic propulsion device for high-endurance missions of a quadcopter drone for the lucrative exploration of earth and other planets with atmospheres. As an airborne platform, this device could achieve scientific objectives better than state-of-the-art revolving spacecraft and walking robots, without any terrain limitation. We developed a mixed reality simulation based on a quadcopter drone and an X-Plane flight simulator. A computer with the X-Plane flight simulator represented the virtual part, and a real quadcopter operating within an airfield represented the real part. In the first phase of our study, we developed a connection interface between the X-Plane flight simulator and the quadcopter ground control station in MATLAB. The experimental results generated from the Earth’s atmosphere show that the flight data from the real and the virtual quadcopters are precise and very close to the prescribed target. The proof-of-concept of the mixed reality simulation of the quadcopter at the Earth atmosphere was verified and validated through several experimental flights of the F450 spider quadcopter with a Pixhawk flight controller with the restricted endurance at the airfield location of Hangang Drone Park in Seoul, South Korea. We concluded that the new generation drones integrated with lightweight electromagnetic propulsion devices are a viable option for achieving unrestricted flight endurance with improved payload capability for Earth and other planetary explorations with the aid of mixed reality simulation to meet the mission flight path demands. This study provides insight into mixed reality simulation aiming for Mars explorations and high-endurance missions in the Earth’s atmosphere with credibility using quadcopter drones regulated by dual-head electromagnetic propulsion devices.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Karol Havrila ◽  
Juraj Tóth ◽  
Leonard Kornoš

Aims. The complex dynamics of bodies, originating from the interplanetary matter and passing through Earth’s atmosphere, defines their further position, velocity, and final location on Earth’s surface in the form of meteorites. One of the important factors that affect the movement of a body in the atmosphere is its shape and orientation. Our goal is to model the interaction of real shape meteoroids with Earth’s atmosphere and compare the results with the standard spherical body approach. Methods. In the simulation, we use 3D models of fragments of the Košice meteorite with different sizes and shapes. Using a 3D model of fragments, we consider the real shape of the body to define its resistance properties during atmospheric transition more specifically. The simulation is performed using virtual wind tunnel in the MicroCFD (Computational Fluid Dynamics) software to obtain more realistic drag coefficients and using the µ(m)-Trajectory software to model the particle trajectory in the atmosphere including the wind profile. The final outputs from these programs are the drag coefficient as a function of the altitude and the particle orientation. Using these parameters we get the more realistic body trajectory and the impact area coordinates. Comparison of the results for real and spherical model meteorite impact location is discussed. Results. Simulation showed significant differences in trajectory and the impact area for the different real body orientations compared to the spherically symmetric body. Also, an important result is a difference in the impact area of the real body with a specific orientation without rotation and the body with considered rotation. The significant difference between the modeled impact of a real shape body and its real place of finding compared to a spherically symmetric body indicates the importance of the method used.


2019 ◽  
Vol 2019 (1) ◽  
pp. 237-242
Author(s):  
Siyuan Chen ◽  
Minchen Wei

Color appearance models have been extensively studied for characterizing and predicting the perceived color appearance of physical color stimuli under different viewing conditions. These stimuli are either surface colors reflecting illumination or self-luminous emitting radiations. With the rapid development of augmented reality (AR) and mixed reality (MR), it is critically important to understand how the color appearance of the objects that are produced by AR and MR are perceived, especially when these objects are overlaid on the real world. In this study, nine lighting conditions, with different correlated color temperature (CCT) levels and light levels, were created in a real-world environment. Under each lighting condition, human observers adjusted the color appearance of a virtual stimulus, which was overlaid on a real-world luminous environment, until it appeared the whitest. It was found that the CCT and light level of the real-world environment significantly affected the color appearance of the white stimulus, especially when the light level was high. Moreover, a lower degree of chromatic adaptation was found for viewing the virtual stimulus that was overlaid on the real world.


Author(s):  
Michael I. Budyko ◽  
Alexander B. Ronov ◽  
Alexander L. Yanshin

Sign in / Sign up

Export Citation Format

Share Document