dislocation core structure
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 9)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 203 ◽  
pp. 111081
Author(s):  
Tomohito Tsuru ◽  
Mitsuhiro Itakura ◽  
Masatake Yamaguchi ◽  
Chihiro Watanabe ◽  
Hiromi Miura

2021 ◽  
Author(s):  
Zhaoxuan Wu ◽  
Rui Wang ◽  
Lingyu Zhu ◽  
Subrahmanyam Pattamatta ◽  
David Srolov

Abstract Body-centred-cubic (BCC) transition metals (TMs) tend to be brittle at low temperatures, posing significant challenges in their processing and major concerns for damage tolerance in critical load-carrying applications. The brittleness is largely dictated by the screw dislocation core structure; the nature and control of which has remained a puzzle for nearly a century. Here, we introduce a universal model and a physics-based material index χ that guides the manipulation of dislocation core structure in all pure BCC metals and alloys. We show that the core structure, commonly classified as degenerate (D) or non-degenerate (ND), is governed by the energy difference between BCC and face-centred cubic (FCC) structures and χ robustly captures this key quantity. For BCC TMs alloys, the core structure transition from ND to D occurs when χ drops below a threshold, as seen in atomistic simulations based on nearly all extant interatomic potentials and density functional theory (DFT) calculations of W-Re/Ta alloys. In binary W-TMs alloys, DFT calculations show that χ is related to the valence electron concentration at low to moderate solute concentrations, and can be controlled via alloying. χ can be quantitatively and efficiently predicted via rapid, low-cost DFT calculations for any BCC metal alloys, providing a robust, easily applied tool for the design of ductile and tough BCC alloys.


2021 ◽  
Vol 209 ◽  
pp. 116801
Author(s):  
Long Zhao ◽  
Hongxiang Zong ◽  
Xiangdong Ding ◽  
Turab Lookman

Atomistic modeling of hydrostatic pressure influence on critical resolved shear stress was performed for glide of screw <a> dislocation in magnesium. It was found that application of pressure can change the resolved critical stress for basal and prismatic slip. The effect is dependent on dislocation core structure. It can be connected to the pressure dependence transient dilatation of the dislocation core.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
D. L. Medlin ◽  
N. Yang ◽  
C. D. Spataru ◽  
L. M. Hale ◽  
Y. Mishin

Sign in / Sign up

Export Citation Format

Share Document