scholarly journals Computer simulations of hydrostatic pressure influence on screw dislocation slip in Mg

Atomistic modeling of hydrostatic pressure influence on critical resolved shear stress was performed for glide of screw <a> dislocation in magnesium. It was found that application of pressure can change the resolved critical stress for basal and prismatic slip. The effect is dependent on dislocation core structure. It can be connected to the pressure dependence transient dilatation of the dislocation core.

2012 ◽  
Vol 602-604 ◽  
pp. 861-865
Author(s):  
Kang You Zhong ◽  
Qing Yuan Meng ◽  
Zhi Fu Yang

The interaction of the shuffle 60° dislocation with a regular chain of hexavacancies was investigated via the molecular dynamics simulation with Stillinger-Weber potential. The results show that an attraction exists between the shuffle 60° dislocation and hexavacany. The attraction energy is dependent obviously upon the hexavacancy concentration. The dislocation can overcome the pinning of vacancies under a critical resolved shear stress, and a linear relationship is found between the critical stress and hexavacancy concentration.


1998 ◽  
Vol 552 ◽  
Author(s):  
S. Jiao ◽  
N. Bird ◽  
P. B. Hirsch ◽  
G. Taylor

ABSTRACTA study of the occurrence of ordinary slip in single crystals of Ti 54.5 at% Al with various orientations at different temperatures shows that the critical resolved shear stress is approximately the same for ¼⟨110] slip on {111} and {110} planes near the peak of the yield stress anomaly. However the shapes of the glide loops are quite different, suggesting that the order of relative mobilities of screw and edge dislocations is reversed in the two cases. The reason for this and its possible effect on the mechanism responsible for the yield stress anomaly of ½⟨110] {111} slip are discussed. Experiments on the thermal reversibility of the yield stress when either ordinary- or super- dislocation slip systems are operating at both temperatures have shown that the yield stress is reversible for the latter but not reversible in the former case.


2008 ◽  
Vol 1128 ◽  
Author(s):  
Miroslav Cak ◽  
Mojmir Sob ◽  
Vaclav Paidar ◽  
Vaclav Vitek

AbstractThe intermetallic compound MoSi2 crystallises in the body-centred-tetragonal C11b structure and while it is brittle when loaded in tension, it deforms plastically in compression even at and below the room temperature. The ductility of MoSi2 is controlled by the mobility of 1/2〈331] dislocations on {013) planes but the critical resolved shear stress for this slip system depends strongly on the orientation of loading and it is the highest for compression along the 〈001] axis. Such deformation behaviour suggests that the dislocation core is controlling the slip on the {013)〈331] system. Since the most important core effect is dissociation into partial dislocations connected by metastable stacking faults the first goal of this paper is to ascertain such faults. This is done by employing the concept of the γ-surface. The γ-surfaces have been calculated for the (013) and (110) planes using a method based on the density functional theory. While there is only one possible stacking fault on the (110) plane, three distinct stacking faults have been found on the (013) plane. This leads to a variety of possible dislocation splittings and the energetics of these dissociations has been studied by employing the anisotropic elastic theory of dislocations. The most important finding is the non-planar dissociation of the 1/2〈331] screw dislocation that is favoured over the planar splittings and may be responsible for the orientation dependence of the critical resolved shear stress for the {013)〈331] slip system.


2003 ◽  
Vol 779 ◽  
Author(s):  
M.A. Soare ◽  
R.C. Picu

AbstractA dislocation core model is developed in terms of a singular decomposition of the elastic field surrounding the defect in a power series of 1/rn. The decomposition is a Laurent expansion beginning with the term corresponding to the Volterra dislocation and continuing with a series of dipoles and multipoles. The analysis is performed for an edge dislocation in an fcc lattice. The field surrounding the dislocation is derived by means of atomistic simulations. The coefficients of the series expansion are determined from the elastic field using path independent integrals. When loaded by a shear stress smaller than the Peierls stress, the core distorts. The distortion up to the instability (Peierls stress) is monitored based on the variation of these coefficients. The stacking fault separating the two partials is characterized, by using a similar procedure, as a source of elastic field.


Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 67 ◽  
Author(s):  
Umer Masood Chaudry ◽  
Kotiba Hamad ◽  
Jung-Gu Kim

In the present work, Ca-induced plasticity of AZ31 magnesium alloy was studied using electron backscattered diffraction (EBSD) measurements supported by viscoplastic self-consistent (VPSC) calculations. For this purpose, alloy samples were stretched to various strains (5%, 10%, and 15%) at room temperature and a strain rate of 10−3 s−1. The EBSD measurements showed a higher activity of non-basal slip system (prismatic slip) as compared to that of tension twins. The VPSC confirmed the EBSD results, where it was found that the critical resolved shear stress of the various slip systems and their corresponding activities changed during the stretching of the alloy samples.


The behaviour of the ½ a <111> screw dislocation core in the presence of an external shear stress on {110} planes has been studied for a variety of effective interionic potentials, each representing a stable b. c. c. lattice. The distortion and motion of the core are described using the concept of fractional dislocations, which are imperfect dislocations bounding a ribbon of generalized (unstable) stacking fault. Three essentially distinct types of movement are found, and the relation of these to plastic flow and twinning in real b. c. c. metals is discussed. It is found that the movement of the dislocation core can be rationalized in terms of the relative stresses needed to create generalized stacking faults on {110} and {112} planes.


Author(s):  
J. C. Barry ◽  
H. Alexander

Dislocations in silicon produced by plastic deformation are generally dissociated into partials. 60° dislocations (Burgers vector type 1/2[101]) are dissociated into 30°(Burgers vector type 1/6[211]) and 90°(Burgers vector type 1/6[112]) dislocations. The 30° partials may be either of “glide” or “shuffle” type. Lattice images of the 30° dislocation have been obtained with a JEM 100B, and with a JEM 200Cx. In the aforementioned experiments a reasonable but imperfect match was obtained with calculated images for the “glide” model. In the present experiment direct structure images of 30° dislocation cores have been obtained with a JEOL 4000EX. It is possible to deduce the 30° dislocation core structure by direct inspection of the images. Dislocations were produced by compression of single crystal Si (sample preparation technique described in Alexander et al.).


Sign in / Sign up

Export Citation Format

Share Document