quark fragmentation
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 8)

H-INDEX

33
(FIVE YEARS 1)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
S. Acharya ◽  
D. Adamová ◽  
A. Adler ◽  
J. Adolfsson ◽  
G. Aglieri Rinella ◽  
...  

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
◽  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract The fragmentation properties of jets containing b-hadrons are studied using charged B mesons in 139 fb−1 of pp collisions at $$ \sqrt{s} $$ s = 13 TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The B mesons are reconstructed using the decay of B± into J/ψK±, with the J/ψ decaying into a pair of muons. Jets are reconstructed using the anti-kt algorithm with radius parameter R = 0.4. The measurement determines the longitudinal and transverse momentum profiles of the reconstructed B hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Lin Dai ◽  
Chul Kim ◽  
Adam K. Leibovich

Abstract In this paper, we study the fragmentation of a heavy quark into a jet near threshold, meaning that final state jet carries most of the energy of the fragmenting heavy quark. Using the heavy quark fragmentation function, we simultaneously resum large logarithms of the jet radius R and 1 − z, where z is the ratio of the jet energy to the initiating heavy quark energy. There are numerically significant corrections to the leading order rate due to this resummation. We also investigate the heavy quark fragmentation to a groomed jet, using the soft drop grooming algorithm as an example. In order to do so, we introduce a collinear-ultrasoft mode sensitive to the grooming region determined by the algorithm’s zcut parameter. This allows us to resum large logarithms of zcut/(1 − z), again leading to large numerical corrections near the endpoint. A nice feature of the analysis of the heavy quark fragmenting to a groomed jet is the heavy quark mass m renders the algorithm infrared finite, allowing a perturbative calculation. We analyze this for EJR ∼ m and EJR » m, where EJ is the jet energy. To do the latter case, we introduce an ultracollinear-soft mode, allowing us to resum large logarithms of EJR/m. Finally, as an application we calculate the rate for e+e− collisions to produce a heavy quark jet in the endpoint region, where we show that grooming effects have a sizable contribution near the endpoint.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Colomba Brancaccio ◽  
Michał Czakon ◽  
Terry Generet ◽  
Michael Krämer

Abstract We compute the fragmentation functions for the production of a Higgs boson at $$ \mathcal{O} $$ O ($$ {y}_t^2 $$ y t 2 αs). As part of this calculation, the relevant splitting functions are also derived at the same perturbative order. Our results can be used to compute differential cross sections with arbitrary top-quark and Higgs-boson masses from massless calculations. They can also be used to resum logarithms of the form ln(pT/m) at large transverse momentum pT to next-to-leading-logarithmic accuracy by solving the DGLAP equations.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Feng Feng ◽  
Yu Jia ◽  
Wen-Long Sang

AbstractWithin NRQCD factorization framework, in this work we compute, at the lowest order in velocity expansion, the next-to-leading-order (NLO) perturbative corrections to the short-distance coefficients associated with heavy quark fragmentation into the $${}^1S_0^{(1,8)}$$ 1 S 0 ( 1 , 8 ) components of a heavy quarkonium. Starting from the Collins and Soper’s operator definition of the quark fragmentation function, we apply the sector decomposition method to facilitate the numerical manipulation. It is found that the NLO QCD corrections have a significant impact.


Sign in / Sign up

Export Citation Format

Share Document