enhanced frequency domain decomposition
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 9 (6) ◽  
pp. 1441-1457
Author(s):  
Mauro Häusler ◽  
Paul Richmond Geimer ◽  
Riley Finnegan ◽  
Donat Fäh ◽  
Jeffrey Ralston Moore

Abstract. Natural rock arches are rare and beautiful geologic landforms with important cultural value. As such, their management requires periodic assessment of structural integrity to understand environmental and anthropogenic influences on arch stability. Measurements of passive seismic vibrations represent a rapid and non-invasive technique to describe the dynamic properties of natural arches, including resonant frequencies, modal damping ratios, and mode shapes, which can be monitored over time for structural health assessment. However, commonly applied spectral analysis tools are often limited in their ability to resolve characteristics of closely spaced or complex higher-order modes. Therefore, we investigate two techniques well-established in the field of civil engineering through application to a set of natural arches previously characterized using polarization analysis and spectral peak-picking techniques. Results from enhanced frequency domain decomposition and parametric covariance-driven stochastic subspace identification modal analyses showed generally good agreement with spectral peak-picking and frequency-dependent polarization analyses. However, we show that these advanced techniques offer the capability to resolve closely spaced modes including their corresponding modal damping ratios. In addition, due to preservation of phase information, enhanced frequency domain decomposition allows for direct and convenient three-dimensional visualization of mode shapes. These techniques provide detailed characterization of dynamic parameters, which can be monitored to detect structural changes indicating damage and failure, and in addition have the potential to improve numerical models used for arch stability assessment. Results of our study encourage broad adoption and application of these advanced modal analysis techniques for dynamic analysis of a wide range of geological features.


Author(s):  
Andrea Arena ◽  
Biagio Carboni ◽  
Walter Lacarbonara ◽  
Mathieu Babaz

Towers, roller batteries, propelling cables and vehicles are the substructures of ropeway transportation systems. High-fidelity modeling of their dynamical interactions together with a reliable identification is a key step towards the prediction of the system response under various transit conditions as well as to investigate design optimization strategies. In this work, a nonlinear mechanical model for the dynamical description of cablecar ski lift systems is discussed. The investigation is focused on the modal features and the forced dynamic response caused by the vehicles transit across the so-called compression towers. The model is validated according to experimental data acquired via a custom-design sensor network. The Enhanced Frequency Domain Decomposition (EFDD) method is employed to identify the frequencies and damping ratios.


Bauingenieur ◽  
2016 ◽  
Vol 91 (04) ◽  
pp. S 2-S 9
Author(s):  
Rune Brincker ◽  
Anela Bajric ◽  
Reto Cantieni

Am Beispiel der experimentellen Untersuchung der dynamischen Eigenschaften einer Fußgängerbrücke werden Probleme bei der Bestimmung der Dämpfungskapazität eines Ingenieurtragwerkes diskutiert. Aus Gründen der Verständlichkeit wird zunächst relativ ausführlich auf diese Experimente, die für die Identifikation der modalen Eigenschaften der Brücke benützten Methoden und die dabei verwendeten Parameter eingegangen.   Solange man sich für die Bestimmung der Dämpfung auf dem Boden analoger Zeitsignale bewegt, sind keine gröberen Fehler zu erwarten. Die manuelle Untersuchung eines freien, rein harmonischen Ausschwingvorganges ist zwar auch nicht vor Ungenauigkeiten gefeit. Da es die „lineare, rein viskos gedämpfte“ Struktur nicht gibt, gibt es auch den rein exponentiellen Ausschwingvorgang nicht. Der aus dem Beginn eines Ausschwingvorganges bestimmte Dämpfungswert wird nicht mit jenem übereinstimmen, der sich aus der Auswertung des Endes des Vorganges ergibt [1]. Man wird sich aber in einem begrenzten Bereich bewegen, maximal vielleicht +/- 30...50 % des „wahren“ Wertes.   Nach der Beschreibung der Versuche wird auf die Probleme eingegangen, die zwangsweise auftreten, wenn für die Bestimmung der Dämpfung ein gemessenes Zeitsignal digitalisiert, in den Frequenzbereich und wieder zurück in den Zeitbereich transformiert wird. Der dabei auftretende, systematische Fehler kann für tiefe Frequenzen exorbitante Ausmaße annehmen. Dass dies hier am Beispiel der im ARTeMIS Softwarepaket angebotenen EFDD-Methode (EFDD = Enhanced Frequency Domain Decomposition, [2]) vorgeführt wird, ist Zufall. EFDD wird auch in anderen Softwarepaketen verwendet. Das gleiche gilt auch für das hier nur am Rand diskutierte Problem, dass auch bei Verwendung der in der Wissenschaft populären SSI Methode (SSI = Stochastic Subspace Identification) unter Umständen sehr grobe Fehler an der identifizierten Dämpfung auftreten können. Am Rand wird dieses Problem hier diskutiert, weil der Grund für solche Fehler noch nicht wissenschaftlich dokumentiert ist.   Der praktisch tätige Ingenieur sollte sich darauf verlassen können, dass die Anwendung eines kommerziell vertriebenen Softwarepaketes für die Auswertung seiner Experimente brauchbare Werte für die Dämpfung liefert. Die Kenntnis der Dämpfungskapazität ist von zentraler Wichtigkeit, wenn es darum geht, die möglichen Auswirkungen von Resonanzzuständen (oder resonanzähnlichen Zuständen) zu beurteilen. Dies trifft gerade für die ersten, tieffrequenten Eigenschwingungen eines Tragwerkes zu. Für exorbitante, systematische Fehler der Auswertemethoden ist hier kein Platz. Wenn man diese aber kennt, kann ihnen aus dem Weg gegangen werden.


Sign in / Sign up

Export Citation Format

Share Document