scholarly journals An update on techniques to assess normal-mode behavior of rock arches by ambient vibrations

2021 ◽  
Vol 9 (6) ◽  
pp. 1441-1457
Author(s):  
Mauro Häusler ◽  
Paul Richmond Geimer ◽  
Riley Finnegan ◽  
Donat Fäh ◽  
Jeffrey Ralston Moore

Abstract. Natural rock arches are rare and beautiful geologic landforms with important cultural value. As such, their management requires periodic assessment of structural integrity to understand environmental and anthropogenic influences on arch stability. Measurements of passive seismic vibrations represent a rapid and non-invasive technique to describe the dynamic properties of natural arches, including resonant frequencies, modal damping ratios, and mode shapes, which can be monitored over time for structural health assessment. However, commonly applied spectral analysis tools are often limited in their ability to resolve characteristics of closely spaced or complex higher-order modes. Therefore, we investigate two techniques well-established in the field of civil engineering through application to a set of natural arches previously characterized using polarization analysis and spectral peak-picking techniques. Results from enhanced frequency domain decomposition and parametric covariance-driven stochastic subspace identification modal analyses showed generally good agreement with spectral peak-picking and frequency-dependent polarization analyses. However, we show that these advanced techniques offer the capability to resolve closely spaced modes including their corresponding modal damping ratios. In addition, due to preservation of phase information, enhanced frequency domain decomposition allows for direct and convenient three-dimensional visualization of mode shapes. These techniques provide detailed characterization of dynamic parameters, which can be monitored to detect structural changes indicating damage and failure, and in addition have the potential to improve numerical models used for arch stability assessment. Results of our study encourage broad adoption and application of these advanced modal analysis techniques for dynamic analysis of a wide range of geological features.

Bauingenieur ◽  
2016 ◽  
Vol 91 (04) ◽  
pp. S 2-S 9
Author(s):  
Rune Brincker ◽  
Anela Bajric ◽  
Reto Cantieni

Am Beispiel der experimentellen Untersuchung der dynamischen Eigenschaften einer Fußgängerbrücke werden Probleme bei der Bestimmung der Dämpfungskapazität eines Ingenieurtragwerkes diskutiert. Aus Gründen der Verständlichkeit wird zunächst relativ ausführlich auf diese Experimente, die für die Identifikation der modalen Eigenschaften der Brücke benützten Methoden und die dabei verwendeten Parameter eingegangen.   Solange man sich für die Bestimmung der Dämpfung auf dem Boden analoger Zeitsignale bewegt, sind keine gröberen Fehler zu erwarten. Die manuelle Untersuchung eines freien, rein harmonischen Ausschwingvorganges ist zwar auch nicht vor Ungenauigkeiten gefeit. Da es die „lineare, rein viskos gedämpfte“ Struktur nicht gibt, gibt es auch den rein exponentiellen Ausschwingvorgang nicht. Der aus dem Beginn eines Ausschwingvorganges bestimmte Dämpfungswert wird nicht mit jenem übereinstimmen, der sich aus der Auswertung des Endes des Vorganges ergibt [1]. Man wird sich aber in einem begrenzten Bereich bewegen, maximal vielleicht +/- 30...50 % des „wahren“ Wertes.   Nach der Beschreibung der Versuche wird auf die Probleme eingegangen, die zwangsweise auftreten, wenn für die Bestimmung der Dämpfung ein gemessenes Zeitsignal digitalisiert, in den Frequenzbereich und wieder zurück in den Zeitbereich transformiert wird. Der dabei auftretende, systematische Fehler kann für tiefe Frequenzen exorbitante Ausmaße annehmen. Dass dies hier am Beispiel der im ARTeMIS Softwarepaket angebotenen EFDD-Methode (EFDD = Enhanced Frequency Domain Decomposition, [2]) vorgeführt wird, ist Zufall. EFDD wird auch in anderen Softwarepaketen verwendet. Das gleiche gilt auch für das hier nur am Rand diskutierte Problem, dass auch bei Verwendung der in der Wissenschaft populären SSI Methode (SSI = Stochastic Subspace Identification) unter Umständen sehr grobe Fehler an der identifizierten Dämpfung auftreten können. Am Rand wird dieses Problem hier diskutiert, weil der Grund für solche Fehler noch nicht wissenschaftlich dokumentiert ist.   Der praktisch tätige Ingenieur sollte sich darauf verlassen können, dass die Anwendung eines kommerziell vertriebenen Softwarepaketes für die Auswertung seiner Experimente brauchbare Werte für die Dämpfung liefert. Die Kenntnis der Dämpfungskapazität ist von zentraler Wichtigkeit, wenn es darum geht, die möglichen Auswirkungen von Resonanzzuständen (oder resonanzähnlichen Zuständen) zu beurteilen. Dies trifft gerade für die ersten, tieffrequenten Eigenschwingungen eines Tragwerkes zu. Für exorbitante, systematische Fehler der Auswertemethoden ist hier kein Platz. Wenn man diese aber kennt, kann ihnen aus dem Weg gegangen werden.


As natural frequencies and mode shapes are often a key to understanding dynamic characteristics of structural elements, modal analysis provides a viable means to determine these properties. This paper investigates the dynamic characteristics of a healthy and unhealthy condition of a commercially used helical gear using the Frequency Domain Decomposition (FDD) identification algorithm in Operational Modal Analysis (OMA). For the unhealthy condition, a refined range of percentage of defects are introduced to the helical gear starting from one (1) tooth being defected (1/60 teeth) to six (6) teeth being defected (6/60 teeth). The specimen is tested under a free-free boundary condition for its simplicity and direct investigation purpose. Comparison of the results of these varying conditions of the structure will be shown to justify the validity of the method used. Acceptable modal data are obtained by considering and accentuating on the technical aspects in processing the experimental data which are critical aspects to be addressed. The natural frequencies and mode shapes are obtained through automatic and manual peak-picking process from Singular Value Decomposition (SVD) plot using Frequency Domain Decomposition (FDD) technique and the results are validated using the established Modal Assurance Criterion (MAC) indicator. The results indicate that OMA using FDD algorithm is a good method in identifying the dynamic characteristics and hence, is effective in detection of defects in this rotating element


2017 ◽  
Vol 3 (2) ◽  
pp. 63
Author(s):  
Mehmet Akköse ◽  
Hugo C. Gomez ◽  
Maria Q. Feng

In this study, a four-span, 224m long, post-tensioned concrete box girder bridge supported on single column piers was subject to a series of controlled vehicle tests. Bridge acceleration response datasets were used to study the effect of truck speed and a sudden stop, on the modal identification of the bridge structure. Natural frequencies and mode shapes of the bridge were determined using the frequency domain decomposition technique for all datasets. The passing of the truck rendered difficult to identify the first bridge frequency. Conversely, the vehicle tests improved the identification of higher vibration modes. This is because the truck preferentially excites the bridge vertical response, which is associated with higher modes of vibrations, especially when a sudden stop of the vehicle occurs. Thus, carefully conducted vehicle-crossing tests provide detailed information about the bridge structure dynamics in the vertical direction. However, to identify lower modes, no vehicle on the bridge is preferred.


2018 ◽  
Vol 7 (4.27) ◽  
pp. 78
Author(s):  
M. Fadhil Shazmir ◽  
N. Ayuni Safari ◽  
M. Azhan Anuar ◽  
A. A.Mat Isa ◽  
Zamri A.R

Obtaining a good experimental modal data is essential in modal analysis in order to ensure accurate extraction of modal parameters. The parameters are compared with other extraction methods to ascertain its consistency and validity. This paper demonstrates the extraction of modal parameters using various identification algorithms in Operational Modal Analysis (OMA) on a 3D scaled model of a 3-storey aluminium structure. Algorithms such as Frequency Domain Decomposition (FDD), Enhanced Frequency Domain Decomposition (EFDD) and Stochastic Subspace Identification (SSI) are applied in this study to obtain modal parameters. The model test structure is fabricated of aluminium and assembled using bolts and nuts. Accelerometers were used to collect the responses and the commercial post processing software was used to obtain the modal parameters. The resulting natural frequencies and mode shapes using FDD method are then compared with other OMA parametric technique such as EFDD and SSI algorithm by comparing the natural frequencies and Modal Assurance Criterion (MAC). Comparison of these techniques will be shown to justify the validity of each technique used and hence confirming the accuracy of the measurement taken.    


Author(s):  
Elsa María Cárdenas ◽  
Luis Ulises Medina

The objective of this research is to present a systematic review of the non-parametric modal analysis methods in the frequency domain. Peak picking (PP), frequency domain decomposition (FDD), enhanced frequency domain decomposition (EFDD), and frequency–spatial domain decomposition (FSDD) are revisited and didactically illustrated by means of modal identification for a study case proposed in previous researches. Algorithm schemes are illustrated to summarize these frequency domain OMA techniques. Modal frequencies, modal damping ratios, and modal shapes are estimated using the different OMA techniques and compared to estimations obtained by the free decay (FD) method reported in previous researches. These are employed to compare the results obtained by the methods presented herein and show a very good correlation in obtaining modal frequencies and a low correlation in the case of modal damping.


Author(s):  
Marina Latinović ◽  
Zoran Mišković ◽  
Marko Popović

This paper presents a dynamic behavior analysis of an old cable-stayed footbridge over river Vrbasin Banja Luka. Identification of modal parameters, of this prone to vibrations footbridge structure,was performed using Operational Modal Analysis with Frequency Domain Decomposition method.Experimental test setups and obtained results, compared to the numerical values obtained by FEmodel updating, are shown. Modal Assurance Criterion was used for the confirmation of theuniqueness of experimentally obtained mode shapes, and also for the comparison of FE model modeshapes to the experimentally obtained ones, in the locations of measurement.


Sign in / Sign up

Export Citation Format

Share Document