volcanic center
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 23)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 2 (6) ◽  
pp. 227
Author(s):  
Katherine de Kleer ◽  
Michael Skrutskie ◽  
Jarron Leisenring ◽  
Ashley G. Davies ◽  
Al Conrad ◽  
...  

Abstract Unraveling the geological processes ongoing at Io’s numerous sites of active volcanism requires high spatial resolution to, for example, measure the areal coverage of lava flows or identify the presence of multiple emitting regions within a single volcanic center. In de Kleer et al. (2017) we described observations with the Large Binocular Telescope during an occultation of Io by Europa at ∼6:17 UT on 2015 March 8 and presented a map of the temperature distribution within Loki Patera derived from these data. Here we present emission maps of three other volcanic centers derived from the same observation: Pillan Patera, Kurdalagon Patera, and the vicinity of Ulgen Patera/PV59/N Lerna Regio. The emission is localized by the light curves and resolved into multiple distinct emitting regions in two of the cases. Both Pillan and Kurdalagon Paterae had undergone eruptions in the months prior to our observations, and the location and intensity of the emission are interpreted in the context of the temporal evolution of these eruptions observed from other facilities. The emission from Kurdalagon Patera is resolved into two distinct emitting regions separated by only a few degrees in latitude that were unresolved by Keck observations from the same month.


2020 ◽  
Author(s):  
Stewart D. Redwood ◽  
Jonathan R. Bryan ◽  
David M. Buchs ◽  
Colin Burge

Abstract The giant Cobre Panama porphyry Cu-Mo-Au-Ag deposit in western Panama is hosted by an undated andesitic volcanic sequence, the Petaquilla batholith (32.20 ± 0.76–28.28 ± 0.61 Ma), and porphyry stocks (28.96 ± 0.62–27.48 ± 0.68 Ma). Here we present a biostratigraphic age for the volcanic sequence based on stratigraphically diagnostic large foraminifera from thin limestone beds within kilometer-thick andesitic rocks. These yield a late middle to late Eocene biostratigraphic age (41.2–33.9 Ma), with a probable late Eocene age (Priabonian stage, 37.8–33.9 Ma), which is slightly older than the age of the batholith and porphyry intrusions. The volcanic sequence is dominated by fine-grained, massive basalt to andesite lavas with subordinate volcaniclastic deposits. A preliminary description of volcanic textures based on macroscopic observation of drill core and quarry/road exposures supports the occurrence of lavas, fallout tuffs, volcanic breccias, and possible pyroclastic density current deposits. Rare polymictic conglomerates with well-rounded clasts of igneous rocks attest to minor sedimentary reworking from a nearby subaerial volcanic environment. The dated limestone that is interbedded with the submarine volcanic sequence was deposited in an estimated water depth of 50 to 80 m, probably in a middle- to outer-shelf large foraminiferal shoal. These results support deposition on the flank of an active volcanic island during early shallowing of the Isthmus of Panama. The Cobre Panama volcanic center is interpreted to have formed in the final stages of the latest Cretaceous-Eocene volcanic arc before, or possibly during, the 175-km sinistral offset of the Panama volcanic front in the late Eocene-Oligocene. However, it remains unclear whether the volcanic center formed on the western continuation of the San Blas-Chagres arc segment or the eastern termination of the Azuero-Soná arc segment and whether it was emplaced during broadening of the pre-Oligocene volcanic front or in a back-arc setting.


2020 ◽  
Vol 103 ◽  
pp. 102760
Author(s):  
María Hurley ◽  
Bruno Colavitto ◽  
Ana Astort ◽  
Lucía Sagripanti ◽  
Eduardo A. Rosselot ◽  
...  

2020 ◽  
Vol 404 ◽  
pp. 107037 ◽  
Author(s):  
Martha Gabriela Gómez-Vasconcelos ◽  
Pilar Villamor ◽  
Shane J. Cronin ◽  
Alan Palmer ◽  
Jonathan Procter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document