stretching or shrinking sheet
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 1)

Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1078 ◽  
Author(s):  
Mohamad Mustaqim Junoh ◽  
Fadzilah Md Ali ◽  
Ioan Pop

The revised Buongiorno’s nanofluid model with the effect of induced magnetic field on steady magnetohydrodynamics (MHD) stagnation-point flow of nanofluid over a stretching or shrinking sheet is investigated. The effects of zero mass flux and suction are taken into account. A similarity transformation with symmetry variables are introduced in order to alter from the governing nonlinear partial differential equations into a nonlinear ordinary differential equations. These governing equations are numerically solved using the bvp4c function in Matlab solver, a very adequate finite difference method. The influences of considered parameters ( P r , M, χ , L e , N b , N t , S, and λ ) on velocity, induced magnetic, temperature, and concentration profiles together with the reduced skin friction and heat transfer rate are discussed. Results from these criterion exposed the existence of dual solutions when magnetic field and suction are applied for a specific range of λ . The stability of the solutions obtained is carried out by performing a stability analysis.


2019 ◽  
Vol 393 ◽  
pp. 103-120 ◽  
Author(s):  
Emmanuel O. Titiloye ◽  
Jacob A. Gbadeyan ◽  
A.T. Adeosun

The present study concerns steady two-dimensional laminar mixed convective boundary layer Casson nanofluid flow along a stretching or shrinking sheet with multiple slip boundary conditions in a non-Darcian porous medium. The effect of viscous dissipation and non-linear radiation are considered. The governing partial differential equations, together with boundary conditions are transformed into a system of dimensionless coupled ordinary differential equations. Galerkin weighted residual method is then employed to solve the transformed coupled ordinary differential equations. The effect of various controlling parameters on dimensionless velocity, temperature, nanoparticle volume fraction, velocity gradient, temperature gradient and nanoparticle volume fraction gradient are presented graphically and discussed. The present approach is validated by comparing the result of this work and those available in the literature, and they are found to be in excellent agreement.


2018 ◽  
Vol 28 (12) ◽  
pp. 2874-2894 ◽  
Author(s):  
Alessandra Borrelli ◽  
Giulia Giantesio ◽  
Maria Cristina Patria ◽  
Natalia C. Roşca ◽  
Alin V. Roşca ◽  
...  

Purpose This paper aims to consider the influence of the temperature and of an external magnetic field on the steady oblique stagnation-point flow for a Boussinesquian nanofluid past a stretching or shrinking sheet. Design/methodology/approach The flow is reduced through similarity transformations to an ordinary boundary value problem, which is solved numerically in MATLAB using the bvp4c function. The behavior of the solution is discussed physically, and some analytical considerations concerning existence of the solution and the occurrence of dual solutions are drawn. Findings The study of the influence of an external magnetic field on the oblique stagnation-point flow of a Buongiorno's Boussinesquian nanofluid is carried out. The fluid clashes on a vertical stretching or shrinking sheet. Dual solutions appear for suitable values of the parameters. Originality/value The present results are new and original.


Sadhana ◽  
2014 ◽  
Vol 39 (6) ◽  
pp. 1573-1583 ◽  
Author(s):  
PERI K KAMESWARAN ◽  
S SHAW ◽  
P SIBANDA

Sign in / Sign up

Export Citation Format

Share Document