sulphate media
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6209
Author(s):  
Aleksandra Kucharczyk ◽  
Lidia Adamczyk ◽  
Krzysztof Miecznikowski

The paper reports the results of the examination of the protective properties of silane coatings based on vinyltrimethoxysilane (VTMS) and ethanol (EtOH), doped with the following electrolytes: acetic acid (AcOH), lithium perchlorate LiClO4, sulphuric acid (VI) H2SO4 and ammonia NH3. The coatings were deposited on stainless steel X20Cr13 by the sol–gel dip-coating method. The obtained VTMS/EtOH/Electrolyte coatings were characterized in terms of corrosion resistance, surface morphology and adhesion to the steel substrate. Corrosion tests were conducted in sulphate media acidified up to pH = 2 with and without chloride ions Cl−, respectively. The effectiveness of corrosion protection was determined using potentiometric curves. It has been demonstrated that the coatings under study slow down the processes of corrosion of the steel substrate, thus effectively protecting it against corrosion.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 963
Author(s):  
Kolela J. Nyembwe ◽  
Elvis Fosso-Kankeu ◽  
Frans Waanders ◽  
Martin Mkandawire

The mechanisms involved in the dissolution of chalcopyrite from a carbonatite concentrate in a ferric sulphate solution at pH 1.0, 1.5 and 1.8, and temperatures 25 °C and 50 °C were investigated. Contrary to expectations and thermodynamic predictions according to which low pH would favour high Cu dissolution, the opposite was observed. The dissolution was also highly correlated to the temperature. CuFeS2 phase dissolution produced intermediate Cu rich phases: CuS, Cu2S and Cu5FeS4, which appeared to envelop CuFeS2. Thermodynamic prediction revealed CuS to be refractory and could hinder dissolution. CuFeS2 phase solid-state dissolution process was further discussed. Free Fe3+ and its complexes (Fe(HSO4)2+, Fe(SO4)2– and FeSO4+ were responsible for Cu dissolution, which increased with increasing pH and temperature. The dissolution improved at pH 1.8 rather than 1.0 due to the increase of (Fe(HSO4)2+, Fe(SO4)2– and FeSO4+, which were also the predominating species at a higher temperature. The fast and linear first dissolution stage was attributed to the combined effect of Fe3+ and its complex (Fe(HSO4)2+, while Fe(SO4)2– was the main species for the second Cu dissolution stage characterised by a slow rate.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Festus Ngui Musyimi ◽  
Jackson Muthengia Wachira ◽  
Joseph Karanja Thiong’o ◽  
Joseph Mwiti Marangu

The durability of cement-based structures majorly depends on their resistivity to the aggressive media in the construction environment. The most aggressive ions commonly encountered in construction environment are chloride (Cl−) and sulphate (SO42−). The interactions of these ions with hydrated cement influence their durability and ultimate service life. This paper reports the experimental findings on an investigation on the diffusivity of Cl− and SO42− ions into mortars made from two mixtures: one made from ground calcined clay bricks (GB) and commercial ordinary Portland cement (OPC) and the other consisting of GB and Portland pozzolana cement (PPC). The test media were 3.5% Cl− and 1.75% SO42− solutions. For comparison, commercial OPC and PPC were also investigated. GB was blended with OPC at replacement levels of 25, 35, 45, and 50% to make OPCGB. Similar blends were also made with PPC replacement levels of 15, 20, and 25% to make PPCGB. Mortar prisms measuring 160 mm × 40 mm × 40 mm were cast at the water-to-cement ratios (w/c) of 0.40, 0.50, and 0.60 using each category of cement and cured in water for 3, 7, and 28 days. Compressive strength measurements were taken at each of the curing ages. The 28-day cured mortar prisms were subjected to compressive strength analysis and accelerated Cl− and SO42− ingress for 36 hours at 12 V. Ion profiling was done on the mortars, and diffusion coefficients of the Cl− and SO42− ions were approximated. The results showed that there was an increase in compressive strength after exposure to Cl− and SO42− ions. In addition, the ingress of Cl− and SO42− ions decreased with an increase in depth of cover. Blended cement exhibited lower Cl− and SO42− ingress than OPC. The ingress of Cl− was observed to be higher than that of SO42− ions. The ingress of Cl− and SO42− ions increased with an increase in w/c ratio. The results further showed that there was a drop in the ingress of Cl− and SO42− ions with an increase in replacement up to 35 percent for OPC. A 15 percent replacement showed a better compressive strength development compared with 20 and 25 percent replacement for PPC. Blended cement showed lower apparent diffusion coefficients (Dapp) compared with OPC. PPC, OPCGB-35, and PPCGB-15 exhibited similar performance in terms of strength development, aggressive ions ingress, and Dapp. In conclusion, it was found that the test cements, PPCGB-15 and OPCGB-35, can be used in similar tested environments as commercial PPC.


2019 ◽  
Vol 55 (3) ◽  
pp. 513-522 ◽  
Author(s):  
N. Belhadj ◽  
T. Benabdallah ◽  
M. T. Coll ◽  
A. Fortuny ◽  
M. Hadj Youcef ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document