terrain representation
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 18)

H-INDEX

7
(FIVE YEARS 1)

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250106
Author(s):  
F. Antonio Medrano

Spatial analysis extracts meaning and insights from spatially referenced data, where the results are highly dependent on the quality of the data used and the manipulations on the data when preparing it for analysis. Users should understand the impacts that data representations may have on their results in order to prevent distortions in their outcomes. We study the consequences of two common data preparations when locating a linear feature performing shortest path analysis on raster terrain data: 1) the connectivity of the network generated by connecting raster cells to their neighbors, and 2) the range of the attribute scale for assigning costs. Such analysis is commonly used to locate transmission lines, where the results could have major implications on project cost and its environmental impact. Experiments in solving biobjective shortest paths show that results are highly dependent on the parameters of the data representations, with exceedingly variable results based on the choices made in reclassifying attributes and generating networks from the raster. Based on these outcomes, we outline recommendations for ensuring geographic information system (GIS) data representations maintain analysis results that are accurate and unbiased.


2021 ◽  
Vol 54 (1C) ◽  
pp. 53-65
Author(s):  
Rayan Thannoun

Analysis of the terrain using three-dimensional models offers a deep insight view of ground surface topography and terrain representation. The Chinara anticline is one of the main structures of NW-SE trends for the highly folded zone in northeastern Iraq. The objective of this study is to understand the interrelationship between topography and morphotectonic features using three-dimensional models. This research employed fourth generates principal raster derivative products from the DEM using ArcGIS. To understand the undulating of this anticline with the morphotectonic style, the adaptive equation has been suggested to determine the direction and amount of the main tectonic forces, which can be applied to other undulated anticlines. The values of northeastern and southwestern limbs undulating index UI are 11.7 and 7.8 respectively that indicates the strong tectonic force towards the northeast. Two listric faults have been conducted via the field survey that confirmed by remotely sensed interpretation and DEM products. These listric faults had an intensive impact in comparison with concluded strike-slip faults, and then the Chinara anticline would be less structural undulating in a region of vicinity syncline to Perat undulation. The morphotectonic landscapes reveal that the listric fault has branched into two parts, the first one extending to form the anticline and the other comprises the structural dilemma.


2020 ◽  
Vol 48 (1) ◽  
pp. 63-77
Author(s):  
Patrick J. Kennelly ◽  
Tom Patterson ◽  
Bernhard Jenny ◽  
Daniel P. Huffman ◽  
Brooke E. Marston ◽  
...  

2020 ◽  
Vol 1566 ◽  
pp. 012116
Author(s):  
J T Tarigan ◽  
O S Sitompul ◽  
M Zarlis ◽  
E B Nababan

2020 ◽  
Vol 9 (4) ◽  
pp. 253 ◽  
Author(s):  
Marianna Farmakis-Serebryakova ◽  
Lorenz Hurni

As relief influences disposition of all the other objects displayed on maps, terrain representation plays one of the key roles in the map creation process. Originally a manual technique, relief shading creates the three-dimensional effect and allows the user to read the terrain in an intuitive way. With the advent of digital elevation models (DEMs) analytical relief shading came into a wider use, since it is faster, requires less effort, and delivers reproducible results. In contrast to manual relief shading, however, it often lacks clarity when representing heterogeneous landscapes with diverse landforms. The aim of this work is to evaluate analytical hillshading methods against a set of landforms within an online survey. The responses revealed that the clear sky model performs best applied to most of the landforms included in the survey, in particular all the mountain and valley types. Cluster shading proved to work well for the mountainous and hilly areas but less so in the depiction of valleys. Texture shading and the multidirectional, oblique-weighted (MDOW) method deliver too much detail for most of the landforms presented. Glaciers were depicted in the best way using the aspect tool. For alluvial fans, the standard relief shading with custom lighting direction proved to work best compared to the other methods.


2020 ◽  
Vol 35 (3) ◽  
pp. 857-877 ◽  
Author(s):  
Marcel Caron ◽  
W. James Steenburgh

Abstract In August 2018 and June 2019, NCEP upgraded the operational versions of the High-Resolution Rapid Refresh (HRRR) and Global Forecast System (GFS), respectively. To inform forecasters and model developers about changes in the capabilities and biases of these modeling systems over the western conterminous United States (CONUS), we validate and compare precipitation forecasts produced by the experimental, preoperational HRRRv3 and GFSv15.0 with the then operational HRRRv2 and GFSv14 during the 2017/18 October–March cool season. We also compare the GFSv14 and GFSv15.0 with the operational, high-resolution configuration of the ECMWF Integrated Forecasting System (HRES). We validate using observations from Automated Surface and Weather Observing System (ASOS/AWOS) stations, which are located primarily in the lowlands, and observations from Snowpack Telemetry (SNOTEL) stations, which are located primarily in the uplands. Changes in bias and skill from HRRRv2 to HRRRv3 are small, with HRRRv3 exhibiting slightly higher (but statistically indistinguishable at a 95% confidence level) equitable threat scores. The GFSv14, GFSv15.0, and HRES all exhibit a wet bias at lower elevations and neutral or dry bias at upper elevations, reflecting insufficient terrain representation. GFSv15.0 performance is comparable to GFSv14 at day 1 and superior at day 3, but lags HRES. These results establish a baseline for current operational HRRR and GFS precipitation capabilities over the western CONUS and are consistent with steady or improving NCEP model performance.


2020 ◽  
Author(s):  
Olga Silantyeva ◽  
John F. Burkhart ◽  
Bikas C. Bhattarai ◽  
Ola Skavhaug ◽  
Sigbjørn Helset

<div> <div> <div> <p>Triangular Irregular Network (TIN) is known to be an efficient way to represent surface topography (Marsh et al. 2018). However, little attention has been given to assess direct benefits of the TIN-based terrain representation in operational hydrology. We connect Shyft-hydrology, a part of Shyft open-source project dedicated to distributed hydrologic modelling in operational environments, with Rasputin software intended for conversion of digital elevation models into simplified triangular meshes. Shyft is known for its high flexibility: the framework lets researcher test different functioning hypothesis with very little programming effort. We implemented new routine in Shyft-hydrology, which allows translation of solar radiation onto inclined surfaces based on (Allen et al. 2006). Thus, Shyft and Rasputin is a unique toolchain to study impact of hillslope variations in solar radiation onto snowmelt, evapotranspiration and discharge simulation.</p> <p>We conducted several experiments on subcatchments of Narayani river located in Central Nepal. This area is known to be very steep, with meteorological stations, located mainly in the low-land. The re-analysis data for the area is coarse and prone to different kind of issues (Bhattarai et al 2020). The outcomes are promising: tin-based solution outperfoms regular grid, when running with Shyft-hydrology model most used in the operations. The new model with translated radiation also works well, giving us no decrease in performance of discharge simulations, but some more insights in snow modelling. We clearly see, what we expect from observations: sunny slopes melt earlier while shady ones keep snow for longer periods.</p> <div> <div> <div> <p>Acknowledgments. This project contributes to LATICE (Land Atmosphere Interaction in Cold Environments) initiative at the University of Oslo.</p> <p>References</p> <p>Marsh, C. B., Spiteri, R. J., Pomeroy, J. W., and Wheater, H. S.: Multi-objective unstructured triangular mesh generation for use in hydro- logical and land surface models, Computers and Geo- sciences, 119, 4967, 2018.</p> <p>Richard G. Allen, Ricardo Trezza, and Masahiro Tasumi. Analytical integrated functions for daily solar radiation on slopes. Agricultural and Forest Meteorology, 139:5573, 2006.</p> <p>Bhattarai, B. C., Burkhart, J. F., Tallaksen, L. M., Xu, C.-Y., and Matt, F. N.: Evaluation of forcing datasets for hydropower inflow simulation in Nepal, Accepted for publication. Hydrology research, 2020</p> </div> </div> </div> </div> </div> </div>


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 672
Author(s):  
Wagenbrenner ◽  
Forthofer ◽  
Page ◽  
Butler

An open source computational fluid dynamics (CFD) solver has been incorporated into the WindNinja modeling framework. WindNinja is widely used by wildland fire managers, as well as researchers and practitioners in other fields, such as wind energy, wind erosion, and search and rescue. Here, we describe the CFD solver and evaluate its performance against the WindNinja conservation of mass (COM) solver, and previously published large-eddy simulations (LES), for three field campaigns with varying terrain complexity: Askervein Hill, Bolund Hill, and Big Southern Butte. We also compare the effects of two model settings in the CFD solver, namely the discretization scheme used for the advection term of the momentum equation and the turbulence model, and provide guidance on model sensitivity to these settings. Additionally, we investigate the computational mesh and difficulties regarding terrain representation. Two important findings from this work are: (1) CFD solver predictions are significantly better than COM solver predictions at windward and lee side observation locations, but no difference was found in predicted speed-up at ridgetop locations between the two solvers, and (2) the choice of discretization scheme for advection has a significantly larger effect on the simulated winds than the choice of turbulence model.


Sign in / Sign up

Export Citation Format

Share Document