wetting curve
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Achmad Syarifudin ◽  
Alfrendo Satyanaga

Soils with two subcurves of Soil-Water Characteristic Curve (SWCC) (dual porosity soils) might be found within various residual soils. Soils located in different depths have different confining pressure. Residual soils are found in the unsaturated zones due to the deep groundwater table. There is a linear correlation between the hydraulic properties of the soil in the unsaturated area and that of its unsaturated properties. This study aims to examine the influence of the confining pressure towards the SWCC of dual porosity soil. The scope of this study involves measurements of the drying and wetting SWCC using Tempe cells, pressure plates, and an advanced triaxial apparatus. In this study, the mathematical equations were developed to explain the effect of confining pressure on SWCC. The experimental results indicated that the dual porosity soil exhibits bimodal characteristics for the drying curve of SWCC and it exhibits unimodal characteristics for the wetting curve of SWCC. As the confining pressure increases, the air entry values, the inflection points, and the standard deviation of drying SWCC increase. In addition, the hysteresis of SWCC is becoming smaller with the increasing confining pressure.


2021 ◽  
Vol 337 ◽  
pp. 02003
Author(s):  
Eduardo Rojas ◽  
Jaime Horta ◽  
María de la Luz Pérez-Rea

A porous-solid model based on the grain and pore size distributions of the soil is coupled with a mechanical model to simulate the soil-water retention curves while the material is deforming. During the determination of the main drying curve, the soil is subjected to high suctions which induce important volumetric deformations. These volumetric deformations modify the pore size distribution of the sample affecting both the drying and the wetting retention curves. Although, most deformation occurs at drying, the drying curve is only slightly affected by soil deformation. In contrast, the wetting curve shows important shifting when volume change is considered.


2016 ◽  
Vol 53 (8) ◽  
pp. 1258-1269 ◽  
Author(s):  
Charles Wang Wai Ng ◽  
Hamed Sadeghi ◽  
S.K. Belal Hossen ◽  
C.F. Chiu ◽  
Eduardo E. Alonso ◽  
...  

A laboratory testing program was conducted to investigate the effects of microstructure on the water retention curve (WRC) and wetting–drying induced volume change in loess. The axis translation and vapor equilibrium techniques were adopted to control suction in the range of 0–400 kPa and 4–140 MPa, respectively. Hysteresis in the WRC of loess was observed for the entire range of suction studied. Compared to re-compacted loess, intact loess exhibits a more pronounced hysteresis in the suction range below 20 kPa, which can be explained by the ink-bottle pore neck effect or constricted pores. The hypothesis is supported by microstructural evidence of mercury intrusion porosimetry and scanning electron microscopy tests. However, re-compacted loess exhibits larger hysteresis than intact loess for suctions above 30 kPa. A conceptual model was introduced, which links WRC to the corresponding pore-size density (PSD) function. Regarding volume change, more noticeable drying-induced shrinkage, but yielding at a lower suction, was observed for re-compacted loess. This is consistent with the compression test results. Stress has a significant effect on change of PSD and constricted macropores leading to a shift in the main wetting curve and a less pronounced hysteresis. Intact loess exhibits a stress-dependent wetting-induced collapse and drying-induced shrinkage.


2011 ◽  
Vol 91 (2) ◽  
pp. 169-183 ◽  
Author(s):  
Mingbin Huang ◽  
S. Lee Barbour ◽  
Amin Elshorbagy ◽  
Julie D. Zettl ◽  
Bing Cheng Si

Huang, M., Barbour, S. L., Elshorbagy, A., Zettl, J. D. and Si, B. C. 2011. Infiltration and drainage processes in multi-layered coarse soils. Can. J. Soil Sci. 91: 169–183. Infiltration and drainage processes in multi-layered soils are complicated by contrasting hydraulic properties. The objective of this study was to evaluate the performances of the hysteretic and non-hysteretic models to simulate the infiltration and drainage processes from three different natural soil profiles containing as many as 20 texturally different layers. Hydraulic properties were estimated from soil textures using pedotransfer functions and were calibrated and validated using measured water contents during infiltration and drainage phases, respectively. The results supported the use of the Arya-Paris pedotransfer function to estimate the wetting curve when contact angles are incorporated. The unique Kozeny-Carmen equation parameter was evaluated by optimizing the estimated saturated hydraulic conductivity. The calibrated numerical model (Hydrus-1D) accurately simulated soil water content profiles and water volumes during the infiltration and drainage phases. The mean error of prediction (MEP) between the measured and estimated soil water contents varied from –0.030 to 0.010 cm3 cm−3, and the standard deviation of prediction (SDP) from 0.003 to 0.057 cm3 cm−3. The simulation was improved for more heterogeneous soil profiles when hysteresis was taken into account. The measured and simulated results indicated that the soil profile with vertical heterogeneity in soil texture can store more water than the similar textured vertically homogeneous soils under drained conditions.


2005 ◽  
Vol 42 (6) ◽  
pp. 1548-1568 ◽  
Author(s):  
Hung Q Pham ◽  
Delwyn G Fredlund ◽  
S Lee Barbour

A review of hysteresis models for soil-water characteristic curves is presented. The models can be categorized into two groups: (i) domain models (or physically based models) and (ii) empirical models. Some models are capable of predicting scanning curves, while other models are capable of predicting the boundary wetting curve and the boundary drying curve. A comparison of the ability of five selected models to predict the boundary wetting curve showed that the Feng and Fredlund model with enhancements by Pham, Fredlund, and Barbour appears to be the most appropriate model for engineering practice. Another comparison among five physically based models for predicting scanning curves showed that the Mualem model-II gives the best overall prediction of scanning curves. The study showed that taking the effect of pore blockage into account does not always give a better prediction of hysteretic soil-water characteristic curves. A scaling method for estimating the initial drying curve, the boundary wetting curve, and the boundary drying curve is also presented in the paper.Key words: soil-water characteristic curve, hysteresis model, comparison, boundary curve, scanning curve, unsaturated soils.


1999 ◽  
Vol 28 (11) ◽  
pp. 1256-1262 ◽  
Author(s):  
Jae Yong Park ◽  
Choon Sik Kang ◽  
Jae Pil Jung
Keyword(s):  

Soil Science ◽  
1984 ◽  
Vol 137 (6) ◽  
pp. 379-390 ◽  
Author(s):  
YECHEZKEL MUALEM
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document