compacted loess
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 44)

H-INDEX

7
(FIVE YEARS 2)

2022 ◽  
Vol 16 ◽  
pp. e00837
Author(s):  
Prinya Chindaprasirt ◽  
Arkhom Sriyoratch ◽  
Anukun Arngbunta ◽  
Panatchai Chetchotisak ◽  
Peerapong Jitsangiam ◽  
...  

2022 ◽  
Vol 395 ◽  
pp. 476-490
Author(s):  
Tao Xiao ◽  
Ping Li ◽  
Shengjun Shao

2021 ◽  
Vol 80 (21) ◽  
Author(s):  
Linxin Zhang ◽  
Shengwen Qi ◽  
Yongtang Yu ◽  
Yaguo Zhang ◽  
Zhiqing Li ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Liguo Yang ◽  
Shengjun Shao ◽  
Zhi Wang

Dynamic loads such as earthquakes and traffic will simultaneously generate vertical dynamic stress and horizontal shear stress in the foundation soil. When the vertical dynamic stress amplitude is twice the horizontal shear dynamic stress amplitude, and the phase difference between them is 90°, a circular dynamic stress path is formed in the τ z θ d ∼ σ zd − σ θ d / 2 stress coordinate system. To simulate the stress state of soil in the area of the circular dynamic stress path caused by bidirectional dynamic stress coupling, a series of tests of compacted loess under the action of a circular dynamic stress path were carried out using a hollow cylindrical torsion shear apparatus. The effects of the mean principal stress, dry density, and deviatoric stress ratio (the ratio of deviator stress to average principal stress) on the dynamic modulus and damping ratio of compacted loess were mainly studied. The test results show that, under the action of the circular dynamic stress path, the larger the mean principal stress is, the larger the dynamic compression modulus and dynamic shear modulus are. The dynamic compression modulus increases obviously with increasing dry density, but the dynamic shear modulus increases only slightly. When the deviator stress ratio increases from 0 to 0.4, the dynamic compression modulus and dynamic shear modulus increase to a certain extent. In addition, the greater the dry density and deviatoric stress ratio are, the greater the initial dynamic compression modulus and initial dynamic shear modulus of the compacted loess. The dynamic compression damping ratio of compacted loess increases with increasing mean principal stress, but the dynamic shear damping ratio decreases with increasing mean principal stress. Dry density basically has no effect on the dynamic compression damping ratio and dynamic shear damping ratio of compacted loess. When the dynamic strain exceeds 1%, the greater the deviatoric stress ratio is, the smaller the dynamic compression damping ratio and the dynamic shear damping ratio are. The research results can provide reference for the study of dynamic modulus and damping ratio of loess under special stress paths.


2021 ◽  
Vol 138 ◽  
pp. 104359
Author(s):  
Miaomiao Ge ◽  
Jubert A. Pineda ◽  
Daichao Sheng ◽  
Glen J. Burton ◽  
Ning Li

2021 ◽  
Author(s):  
Linxin Zhang ◽  
Shengwen Qi ◽  
Yongtang Yu ◽  
Yaguo Zhang ◽  
Zhiqing Li ◽  
...  

Abstract With the development of human society, mega engineering projects of removing the tops of hills to infill valleys began to appear in the loess region. The thickness of the manual filling compacted loess can reach tens of meters. For such large-scale construction projects, studying the properties of compacted loess is essential to ensure the safety and reliability of land creation and artificial infrastructure. In this paper, the specimens from two exploration well profiles were carried out to study the physical properties of natural loess and compacted loess from the Loess Plateau. Here the natural loess selected was deposited in old ages (Q2 and Q1) and had strong stability. The natural water content, dry density, specific gravity, liquid limit, plastic limit, plasticity index, clay fraction, silt fraction, sand fraction, compression modulus, and permeability coefficient have been determined. Statistical theories such as t-test and correlation coefficient checks were used to describe the difference between the two kinds of loess, and the degree of correlation among various indicators. Besides, 14 groups of exploration well data in 8 studies were collected. The variation of natural water content and dry density with well depth was analyzed to supplement the existing data. Results have shown that the manual filling compacted loess is significantly different from the natural loess. On the whole, the liquid limit, plastic limit, plasticity index, clay fraction, silt fraction, sand fraction and compression modulus of the compacted loess are smaller. And compared with the natural sedimentary loess with strong stability, it deforms more easily. The difference of compression modulus between the compacted loess and natural loess is mainly controlled by the dry density and the particle composition. Moreover, the heterogeneous level of the manual filling compacted loess is greater than that of the natural loess in the horizontal direction and smaller than that of the natural loess in the vertical direction. Under a combination of external hydrologic conditions and dead weight, the compacted loess will become more stable.


Author(s):  
Rui Wang ◽  
Zhiping Hu ◽  
Jiakuan Ma ◽  
Xiang Ren ◽  
Fangtao Li ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1809
Author(s):  
Yongpeng Nie ◽  
Wankui Ni ◽  
Xiangning Li ◽  
Haiman Wang ◽  
Kangze Yuan ◽  
...  

To better understand and analyze the unsaturated stability of loess filling body, it is necessary to study the changes in suction stress before and after the drying-wetting cycles. In this study, the SWCC of compacted loess before and after drying-wetting cycles was tested using the filter paper method. Then, the suction stress was calculated and the microstructure of the loess sample was determined by the SEM and NMR. The results showed that the drying-wetting cycles had an important influence on the SSCC and microstructure of compacted loess. The change in suction stress before and after the drying-wetting cycles can be well explained by the loess microstructure. The drying-wetting cycles did not significantly change the basic trend of the compacted loess’s SSCC, but it increased the porosity and the dominant pore diameter of loess, and reduced the suction stress under the same matric suction. The main significant change in suction stress with matric suction occurred within the range of the dominant soil pores. The larger the dominant pore diameter, the smaller the suction stress under the same matric suction. In addition, this study proposes a new method for calculating suction stress based on the PSD parameters.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253508
Author(s):  
Kang-ze Yuan ◽  
Wan-kui Ni ◽  
Xiang-fei Lü ◽  
Xi-jun Wang

Permeability characteristics of compacted loess is always an important topic in soil mechanics and geotechnical engineering. This study explored the permeability characteristics of compacted loess under different dry densities and wetting-drying cycles, and found that as the dry density increases, the compacted loess surface became denser, the saturation permeability coefficient and saturation infiltration rate decreased. However, the wetting-drying cycle presented the opposite result. Meanwhile, the evolution of the microstructure was investigated by Scanning Electron Microscope (SEM) and Nuclear Magnetic Resonance (NMR) to explain the change of its permeability characteristics. The size of compacted loess aggregates was quantitatively analyzed by Image-Pro Plus (IPP) software. It showed that the size of compacted loess aggregates for different dry densities were concentrated from 10–100 μm, occupying 65.0%, 58.19%, and 51.64% of the total aggregates area respectively. And the interesting finding was that the area occupied by 10–50 μm aggregates remained basically unchanged with the number of wetting-drying cycles increasing. Therefore, the size of 10–50 μm aggregates represented the transition zone of compacted loess. NMR analyses revealed that with increasing dry density, the volume of macropores in the compacted loess rapidly decreased, the volume of mesopores and small pores increased. Meanwhile, the change in micropores was relatively small. The pore volume of the compacted loess after three wetting-drying cycles increased by 8.56%, 8.61%, and 6.15%, respectively. The proportion of macropores in the total pore volume shows the most drastic change. Variations in aggregate size and connection relationships made it easier to form overhead structures between aggregates, and the increased of macropore volume will form more water channels. Therefore, the change in permeability characteristics of compacted loess is determined by aggregate size, loess surface morphology, and the total pore volume occupied by macropores.


Sign in / Sign up

Export Citation Format

Share Document