ground surface subsidence
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

2020 ◽  
Author(s):  
H. Brendan O'Neill ◽  
Yu Zhang

<p>Ground surface subsidence caused by the melt of excess ice is a key geomorphic process in permafrost regions. Subsidence can damage infrastructure, alter ecology and hydrology, and influence carbon cycling. The Geological Survey of Canada maintains a network of thaw tubes in northwestern Canada, which records annual thaw penetration, active-layer thickness, and ground surface elevation changes at numerous sites. Measurements from the early 1990s from 17 sites in the Mackenzie Delta area have highlighted persistent increases in thaw penetration in response to rising air temperatures. These increases in thaw penetration have been accompanied by significant ground surface subsidence (~5 to 20 cm) at 10 ice rich sites, with a median subsidence rate of 0.4 cm a<sup>-1</sup> (min: 0.2, max: 0.8 cm a<sup>-1</sup>). Here we present preliminary results comparing these long-term field data to simulations for two observation sites using the Northern Ecosystem Soil Temperature (NEST) model. NEST has been modified to include a routine that accounts for ground surface subsidence caused by the melt of excess ground ice. The excess ice content of upper permafrost in the simulations was estimated based on ratios between thaw penetration and subsidence measured at each thaw tube. The NEST simulations begin in 1901, and there is little ground surface subsidence until the 1980s. The simulated rate of ground surface subsidence increases in the 1990s. The modelled ground surface subsidence is in good agreement with the measured annual magnitudes and longer-term patterns over the measurement period from 1992 to 2017. This preliminary assessment indicates that the modified NEST model is capable of predicting gradual thaw subsidence in ice-rich permafrost environments over decadal timescales.</p>


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 462 ◽  
Author(s):  
Qingxiang Huang ◽  
Jian Cao

In order to explore the rational coal pillar malposition distance (CPMD) based on coupling control of stress field, displacement field and fracture field (three-field) in shallow buried closely spaced multi-seam (SBCSM-S) mining, and realize coupling control of underground concentrated stress and ground surface fractures, taking the No. 1–2 and No. 2–2 coal seams mining in the northward east area of Ningtiaota coal mine as background, through physical simulation and theoretical analysis, the three-field evolution in SBCSM-S mining was analysed, the effect of different CPMD on coal pillar concentrated stress, ground surface subsidence and fractures development was revealed, and the rational CPMD based on coupling control of three-field was put forward. The results show that the concentrated fractures and concentrated stress are due to the strata’s uneven subsidence by coal pillars. Rational arrangement of CPMD can avoid the superposition of vertical stress caused by upper and lower coal pillars and reduce the development of ground fractures and uneven subsidence. Two theoretical models were established: one was based on the control of a concentrated stress field, the other on the control of the displacement and fracture fields. These results will be applied in a follow-up arrangement at the Ningtiaota coal mine, and can provide a new way for safe and green mining in SBCSM-S.


Sign in / Sign up

Export Citation Format

Share Document