minimum viable population size
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 2)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Stanislas Zanvo ◽  
Sylvestre C.A.M. Djagoun ◽  
Akomian F. Azihou ◽  
Bruno Djossa ◽  
Komlan Afiademanyo ◽  
...  

We conducted in the Dahomey Gap (DG) a pioneer study on the genetic tracing of the African pangolin trade. We sequenced and genotyped 189 white-bellied pangolins from 18 forests and 12 wildlife markets using one mitochondrial fragment and 20 microsatellites loci. Tree-based assignment procedure showed the 'endemicity' of the pangolin trade, as strictly fed by the lineage endemic to the DG (DGL). DGL populations were characterized by low levels of genetic diversity, an overall absence of equilibrium, inbreeding depression and lack of geographic structure. We identified a 92-98% decline in DGL effective population size 200-500 ya –concomitant with major political transformations along the 'Slave Coast' – leading to contemporaneous estimates inferior to minimum viable population size. Genetic tracing suggested that wildlife markets from the DG sourced through the entire DGL range. Our loci provided the necessary power to distinguish among all the genotyped pangolins, tracing the dispatch of same individuals on the markets and within local communities. We developed an approach combining rarefaction analysis of private allele frequencies and cross-validation with observed data that could trace five traded pangolins to their forest origin, c. 200-300 km away from the markets. Although the genetic toolkit that we designed from traditional markers can prove helpful to trace the pangolin trade, our tracing ability was limited by the lack of population structure within DGL. Given the deleterious combination of genetic, demographic and trade-related factors affecting DGL populations, the conservation status of white-bellied pangolins in the DG should be urgently re-evaluated.


2017 ◽  
Vol 23 (2) ◽  
pp. 200 ◽  
Author(s):  
Carlo Pacioni ◽  
Matthew R. Williams ◽  
Robert C. Lacy ◽  
Peter B. S. Spencer ◽  
Adrian F. Wayne

Globally, many wildlife species are declining and an increasing number are threatened by extinction or are extinct. Active management is generally required to mitigate these trends and population viability analysis (PVA) enables different scenarios to be evaluated and informs management decisions. Based on population parameters obtained from a threatened bettong, the woylie (Bettongia penicillata ogilbyi), we developed and validated a PVA model. We identified the demographic and genetic responses to different threatening factors and developed a general framework that would facilitate similar work in other bettong species. The two main threatening processes are predation by introduced animals and its interaction with reduced fitness (e.g. due to inbreeding depression or a disease). Although predation alone can drive a decline in certain circumstances (e.g. when predation success is independent from prey population density), synergistically, predation and reduced fitness can be particularly relevant, especially for small populations. The minimum viable population size was estimated at 1000–2000 individuals. In addition, the models identified that research into age-specific mortality rates and predation rates by introduced animals should be the focus of future work. The PVA model created here provides a basis to investigate threatening processes and management strategies in woylie populations and other extant bettong species, given the ecological and physiological similarities among these threatened species.


2011 ◽  
Vol 26 (12) ◽  
pp. 619-620 ◽  
Author(s):  
Barry W. Brook ◽  
Corey J.A. Bradshaw ◽  
Lochran W. Traill ◽  
Richard Frankham

2011 ◽  
Vol 22 (2) ◽  
pp. 144-154 ◽  
Author(s):  
MIEKO FERREIRA KANEGAE

AbstractThe pressures for land use change have led to an increasing isolation of habitat remnants throughout the world. The goal of this study was to estimate the population size and density of some endemic and threatened species in a nature reserve in the Cerrado biome. One hundred and thirty four point transects were undertaken at the Estação Ecológica de Itirapina (EEI), one of the last natural grassland savannah remnants in São Paulo state, in the south-east of Brazil between September and December 2006 and densities estimated for seven species (four endemic to the Cerrado, one near-endemic and two grassland specialists). Neither species reached the minimum viable population size of 500-5000 individuals. Four species, White-banded Tanager, White-rumped Tanager, Black-throated Saltator and Sharp-tailed Tyrant have populations ranging from 112 to 248 individuals, while the other species have a low population (< 60 individuals). The mean densities of Sharp-tailed Tyrant and Cock-tailed Tyrant in the EEI grassland showed similar values to those observed in larger areas of the Cerrado, which may indicate that the EEI grassland area is well conserved. In spite of the restricted size of the EEI, small areas can maintain some endemic and threatened bird populations, thus contributing to local biodiversity and the ecological processes in the region. The capacity of fragments of Cerrado (~ 2,000 ha) to maintain populations of endemic and threatened bird species is unlikely to be effective in the long term.


2011 ◽  
Vol 68 (1) ◽  
pp. 62-73 ◽  
Author(s):  
Amy M. Schueller ◽  
Daniel B. Hayes

Population viability analysis is a useful tool to explore the relationship between extinction risk and population size, but often does not include genetic factors. Our objectives were to determine minimum viable population size (MVP) for lake sturgeon ( Acipenser fulvescens ) and examine how inbreeding depression may affect MVP. Our individual-based model incorporated inbreeding depression in two ways: individuals with inbreeding coefficients above a threshold experienced inbreeding depression (threshold), and individuals experienced inbreeding depression at a rate related to their inbreeding coefficient (gradual). Three mechanisms relating inbreeding to fitness were explored (young-of-the-year (YOY) viability, post-YOY viability, number of progeny). The criterion we used to determine MVP was a 5% chance of extinction over 250 years. The estimated MVP without inbreeding effects was 80 individuals. For some scenarios incorporating inbreeding, MVP did not change, but for others, MVP was substantially higher, reaching values up to 1800. Results demonstrate that extinction risk and MVP can be influenced by both demographic stochasticity and inbreeding depression. This research should inform management by determining MVP and how inbreeding, which is expected to accrue in remnant populations because of generations of low abundance, may affect MVP.


2010 ◽  
Vol 139 (5) ◽  
pp. 1551-1565 ◽  
Author(s):  
Henriette I. Jager ◽  
Ken B. Lepla ◽  
Webb Van Winkle ◽  
Brad W. James ◽  
Steven O. McAdam

Sign in / Sign up

Export Citation Format

Share Document