piston crevice
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

2018 ◽  
Vol 198 ◽  
pp. 393-411 ◽  
Author(s):  
Nicolas Bourgeois ◽  
Hervé Jeanmart ◽  
Grégoire Winckelmans ◽  
Olivier Lamberts ◽  
Francesco Contino

Author(s):  
Oku Nyong ◽  
Robert Woolley ◽  
Simon Blakey ◽  
Ehsan Alborzi

Author(s):  
Isaac W. Ekoto ◽  
Benjamin M. Wolk ◽  
William F. Northrop ◽  
Nils Hansen ◽  
Kai Moshammer

In-cylinder reforming of injected fuel during an auxiliary negative valve overlap (NVO) period can be used to optimize main-cycle combustion phasing for low-load Low-Temperature Gasoline Combustion, where highly dilute mixtures can lead to poor combustion stability. The objective of this work is to examine the effects of reformate composition on main-cycle engine performance for a research gasoline. A custom alternate-fire sequence with nine pre-conditioning cycles was used to generate a common exhaust temperature and composition boundary condition for a cycle-of-interest. Performance metrics such as main-period combustion stability and total cycle efficiency were collected for these custom cycles. The NVO-produced reformate stream was also separately collected using a dump valve apparatus and characterized in detail using both gas chromatography and photoionization mass spectroscopy. To facilitate gas sample analysis, sampling experiments were conducted using a five-component gasoline surrogate (iso-octane, n-heptane, ethanol, 1-hexene, and toluene) that matched the molecular composition, 50% boiling point, and ignition characteristics of the research gasoline. For the gasoline, it was found that the most advanced NVO start-of-injection (SOI) led to the most advanced main-cycle 10% burn angle. The effect was more pronounced as the fraction of total fuel injected in the NVO period increased. With the most retarded NVO SOI, shorter residence times and piston spray impingement limited the opportunity for injected fuel decomposition. For the gasoline surrogate, the most advanced NVO SOI had reduced reactivity relative to more intermediate NVO SOI, which was attributed to rapid in-cylinder mixing that led to a large amount of fuel quench in the piston crevice. For all NVO periods, combustion phasing advanced as the main-period fueling decreased. Slower kinetics for leaner mixtures were offset by a combination of increased bulk-gas temperature from higher charge specific heat ratios and increased fuel reactivity due to higher charge reformate fractions.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Manuel Dorsch ◽  
Jens Neumann ◽  
Christian Hasse

In this work, the application of a phenomenological model to determine engine-out hydrocarbon (HC) emissions in driving cycles is presented. The calculation is coupled to a physical-based simulation environment consisting of interacting submodels of engine, vehicle, and engine control. As a novelty, this virtual calibration methodology can be applied to optimize the energy conversion inside a spark-ignited (SI) internal combustion engine at transient operation. Using detailed information about the combustion process, the main origins and formation mechanisms of unburned HCs like piston crevice, oil layer, and wall quenching are considered in the prediction, as well as the in-cylinder postoxidation. Several parameterization approaches, especially, of the oil layer mechanism are discussed. After calibrating the emission model to a steady-state engine map, the transient results are validated successfully against measurements of various driving cycles based on different calibration strategies of engine operation.


2002 ◽  
Vol 125 (1) ◽  
pp. 336-343 ◽  
Author(s):  
K. Kozuka ◽  
T. Ozasa ◽  
T. Fujikawa ◽  
A. Saito

The schlieren photographs of in-cylinder processes in a spark-ignited premixed charge gasoline engine were observed via a transparent collimating cylinder and were presented in comparison with a pressure analysis. The schlieren photographs of the spark, the initial flame and the unburned gas ejection from the piston crevice, which is unable to be observed by direct photography, were clearly taken. It shows that the small difference in the initial combustion process among cycles is intensified by the movement of the piston during the expansion stroke. Finally, this difference appears as the cycle by cycle variation in the pressure and the rate of heat release. The observed flame size increased faster and was larger than the burned gas estimated from the pressure. The difference between them is large enough and can not be explained without considering the mixing of burned and unburned gases inside the flame front.


Sign in / Sign up

Export Citation Format

Share Document