underwater propulsor
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 9 (12) ◽  
pp. 1406
Author(s):  
Han Li ◽  
Qiaogao Huang ◽  
Guang Pan ◽  
Xinguo Dong ◽  
Fuzheng Li

Reducing the noise of the underwater propulsor is gaining more and more attention in the marine industry. The pump-jet propulsor (PJP) is an extraordinary innovation in marine propulsion applications. This paper inspects the effects of blade number on a pre-swirl stator pump-jet propulsor (PJP) quantitatively and qualitatively. The numerical calculations are conducted by IDDES and ELES, where the ELES is only adopted to capture the vortical structures after refining the mesh. The numerical results show good agreement with the experiment. Detailed discussions of the propulsion, the features of thrust fluctuation in time and frequency domains, and the flow field are involved. Based on the ELES results, the vortices in the PJP flow field and the interactions between the vortices of the stator, rotor, and duct are presented. Results suggest that, though changing the blade number under a constant solidity does not affect the propulsion, it has considerable effects on the thrust fluctuation of PJP. The wakes of the stator and rotor are also notably changed. Increasing the stator blade numbers has significantly weakened the high-intensity vortices in the stator wake and, hence, the interaction with the rotor wake vortices. The hub vortices highly depend upon the wake vortices of the rotor. The hub vortices are considerably broken by upstream wake vortices when the load per rotor blade is high. In summary, the blade number is also vital for the further PJP design, particularly when the main concerns are exciting force and noise performance.


2012 ◽  
Vol 23 (10) ◽  
pp. 1069-1082 ◽  
Author(s):  
Ganesan Karthigan ◽  
Sujoy Mukherjee ◽  
Ranjan Ganguli

Ionic polymer–metal composites are soft artificial muscle-like bending actuators, which can work efficiently in wet environments such as water. Therefore, there is significant motivation for research on the development and design analysis of ionic polymer–metal composite based biomimetic underwater propulsion systems. Among aquatic animals, fishes are efficient swimmers with advantages such as high maneuverability, high cruising speed, noiseless propulsion, and efficient stabilization. Fish swimming mechanisms provide biomimetic inspiration for underwater propulsor design. Fish locomotion can be broadly classified into body and/or caudal fin propulsion and median and/or paired pectoral fin propulsion. In this article, the paired pectoral fin–based oscillatory propulsion using ionic polymer–metal composite for aquatic propulsor applications is studied. Beam theory and the concept of hydrodynamic function are used to describe the interaction between the beam and water. Furthermore, a quasi-steady blade element model that accounts for unsteady phenomena such as added mass effects, dynamic stall, and the cumulative Wagner effect is used to obtain hydrodynamic performance of the ionic polymer–metal composite propulsor. Dynamic characteristics of ionic polymer–metal composite fin are analyzed using numerical simulations. It is shown that the use of optimization methods can lead to significant improvement in performance of the ionic polymer–metal composite fin.


Author(s):  
Sang Jun An ◽  
Oh Joon Kwon

In the present study, the hydrodynamic characteristics of underwater propulsors have been numerically investigated using a RANS flow solver based on pseudo-compressibility. A vertex-centered finite-volume method was utilized in conjunction with 2nd-order Roe’s FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras one equation model was employed for the closure of turbulence. A dual-time stepping method and the Gauss-Seidel iteration were used for unsteady time integration. An unstructured overset mesh technique was adopted to treat the relative motion between multiple bodies. Calculations were made for the DTRC4119 marine propeller at several advancing ratios. Additional calculations were also made for multiple-blade-row underwater propulsors. Reasonable agreements were obtained between the present results and the experiment for the pressure coefficients on the blade surface and the integrated blade loadings. The interaction between multiple blade rows and the thrust and torque distributions were also analyzed to investigate the performance of underwater propulsors.


2007 ◽  
Vol 4 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Yong-hua Zhang ◽  
Lai-bing Jia ◽  
Shi-wu Zhang ◽  
Jie Yang ◽  
K. H. Low

Sign in / Sign up

Export Citation Format

Share Document