semantic predications
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Xiaoying Li ◽  
Suyuan Peng ◽  
Jian Du

AbstractIn China, Prof. Hongzhou Zhao and Zeyuan Liu are the pioneers of the concept “knowledge unit” and “knowmetrics” for measuring knowledge. However, the definition on “computable knowledge object” remains controversial so far in different fields. For example, it is defined as (1) quantitative scientific concept in natural science and engineering, (2) knowledge point in the field of education research, and (3) semantic predications, i.e., Subject-Predicate-Object (SPO) triples in biomedical fields. The Semantic MEDLINE Database (SemMedDB), a high-quality public repository of SPO triples extracted from medical literature, provides a basic data infrastructure for measuring medical knowledge. In general, the study of extracting SPO triples as computable knowledge unit from unstructured scientific text has been overwhelmingly focusing on scientific knowledge per se. Since the SPO triples would be possibly extracted from hypothetical, speculative statements or even conflicting and contradictory assertions, the knowledge status (i.e., the uncertainty), which serves as an integral and critical part of scientific knowledge has been largely overlooked. This article aims to put forward a framework for Medical Knowmetrics using the SPO triples as the knowledge unit and the uncertainty as the knowledge context. The lung cancer publications dataset is used to validate the proposed framework. The uncertainty of medical knowledge and how its status evolves over time indirectly reflect the strength of competing knowledge claims, and the probability of certainty for a given SPO triple. We try to discuss the new insights using the uncertainty-centric approaches to detect research fronts, and identify knowledge claims with high certainty level, in order to improve the efficacy of knowledge-driven decision support.


10.2196/18323 ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. e18323
Author(s):  
Jian Du ◽  
Xiaoying Li

Background Combination therapy plays an important role in the effective treatment of malignant neoplasms and precision medicine. Numerous clinical studies have been carried out to investigate combination drug therapies. Automated knowledge discovery of these combinations and their graphic representation in knowledge graphs will enable pattern recognition and identification of drug combinations used to treat a specific type of cancer, improve drug efficacy and treatment of human disorders. Objective This paper aims to develop an automated, visual approach to discover knowledge about combination therapies from biomedical literature, especially from those studies with high-level evidence such as clinical trial reports and clinical practice guidelines. Methods Based on semantic predications, which consist of a triple structure of subject-predicate-object (SPO), we proposed an automated algorithm to discover knowledge of combination drug therapies using the following rules: 1) two or more semantic predications (S1-P-O and Si-P-O, i = 2, 3…) can be extracted from one conclusive claim (sentence) in the abstract of a given publication, and 2) these predications have an identical predicate (that closely relates to human disease treatment, eg, “treat”) and object (eg, disease name) but different subjects (eg, drug names). A customized knowledge graph organizes and visualizes these combinations, improving the traditional semantic triples. After automatic filtering of broad concepts such as “pharmacologic actions” and generic disease names, a set of combination drug therapies were identified and characterized through manual interpretation. Results We retrieved 22,263 clinical trial reports and 31 clinical practice guidelines from PubMed abstracts by searching “antineoplastic agents” for drug restriction (published between Jan 2009 and Oct 2019). There were 15,603 conclusive claims locally parsed using the search terms “conclusion*” and “conclude*” ready for semantic predications extraction by SemRep, and 325 candidate groups of semantic predications about combined medications were automatically discovered within 316 conclusive claims. Based on manual analysis, we determined that 255/316 claims (78.46%) were accurately identified as describing combination therapies and adopted these to construct the customized knowledge graph. We also identified two categories (and 4 subcategories) to characterize the inaccurate results: limitations of SemRep and limitations of proposal. We further learned the predominant patterns of drug combinations based on mechanism of action for new combined medication studies and discovered 4 obvious markers (“combin*,” “coadministration,” “co-administered,” and “regimen”) to identify potential combination therapies to enable development of a machine learning algorithm. Conclusions Semantic predications from conclusive claims in the biomedical literature can be used to support automated knowledge discovery and knowledge graph construction for combination therapies. A machine learning approach is warranted to take full advantage of the identified markers and other contextual features.


2020 ◽  
Author(s):  
Jian Du ◽  
Xiaoying Li

BACKGROUND Combination therapy plays an important role in the effective treatment of malignant neoplasms and precision medicine. Numerous clinical studies have been carried out to investigate combination drug therapies. Automated knowledge discovery of these combinations and their graphic representation in knowledge graphs will enable pattern recognition and identification of drug combinations used to treat a specific type of cancer, improve drug efficacy and treatment of human disorders. OBJECTIVE This paper aims to develop an automated, visual approach to discover knowledge about combination therapies from biomedical literature, especially from those studies with high-level evidence such as clinical trial reports and clinical practice guidelines. METHODS Based on semantic predications, which consist of a triple structure of subject-predicate-object (SPO), we proposed an automated algorithm to discover knowledge of combination drug therapies using the following rules: 1) two or more semantic predications (S<sub>1</sub>-P-O and S<sub>i</sub>-P-O, i = 2, 3…) can be extracted from one conclusive claim (sentence) in the abstract of a given publication, and 2) these predications have an identical predicate (that closely relates to human disease treatment, eg, “treat”) and object (eg, disease name) but different subjects (eg, drug names). A customized knowledge graph organizes and visualizes these combinations, improving the traditional semantic triples. After automatic filtering of broad concepts such as “pharmacologic actions” and generic disease names, a set of combination drug therapies were identified and characterized through manual interpretation. RESULTS We retrieved 22,263 clinical trial reports and 31 clinical practice guidelines from PubMed abstracts by searching “antineoplastic agents” for drug restriction (published between Jan 2009 and Oct 2019). There were 15,603 conclusive claims locally parsed using the search terms “conclusion*” and “conclude*” ready for semantic predications extraction by SemRep, and 325 candidate groups of semantic predications about combined medications were automatically discovered within 316 conclusive claims. Based on manual analysis, we determined that 255/316 claims (78.46%) were accurately identified as describing combination therapies and adopted these to construct the customized knowledge graph. We also identified two categories (and 4 subcategories) to characterize the inaccurate results: limitations of SemRep and limitations of proposal. We further learned the predominant patterns of drug combinations based on mechanism of action for new combined medication studies and discovered 4 obvious markers (“combin*,” “coadministration,” “co-administered,” and “regimen”) to identify potential combination therapies to enable development of a machine learning algorithm. CONCLUSIONS Semantic predications from conclusive claims in the biomedical literature can be used to support automated knowledge discovery and knowledge graph construction for combination therapies. A machine learning approach is warranted to take full advantage of the identified markers and other contextual features.


2019 ◽  
Author(s):  
Hannah A. Burkhardt ◽  
Devika Subramanian ◽  
Justin Mower ◽  
Trevor Cohen

AbstractThe identification of drug-drug interactions (DDIs) is important for patient safety; yet, compared to other pharmacovigilance work, a limited amount of research has been conducted in this space. Recent work has successfully applied a method of deriving distributed vector representations from structured biomedical knowledge, known as Embedding of Semantic Predications (ESP), to the problem of predicting individual drug side effects. In the current paper we extend this work by applying ESP to the problem of predicting polypharmacy side-effects for particular drug combinations, building on a recent reconceptualization of this problem as a network of drug nodes connected by side effect edges. We evaluate ESP embeddings derived from the resulting graph on a side-effect prediction task against a previously reported graph convolutional neural network approach, using the same data and evaluation methods. We demonstrate that ESP models perform better, while being faster to train, more re-usable, and significantly simpler.


JAMIA Open ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 275-282 ◽  
Author(s):  
Jake Vasilakes ◽  
Rubina Rizvi ◽  
Genevieve B Melton ◽  
Serguei Pakhomov ◽  
Rui Zhang

Abstract Objectives This study evaluated and compared a variety of active learning strategies, including a novel strategy we proposed, as applied to the task of filtering incorrect semantic predications in SemMedDB. Materials and methods We evaluated 8 active learning strategies covering 3 types—uncertainty, representative, and combined—on 2 datasets of 6,000 total semantic predications from SemMedDB covering the domains of substance interactions and clinical medicine, respectively. We also designed a novel combined strategy called dynamic β that does not use hand-tuned hyperparameters. Each strategy was assessed by the Area under the Learning Curve (ALC) and the number of training examples required to achieve a target Area Under the ROC curve. We also visualized and compared the query patterns of the query strategies. Results All types of active learning (AL) methods beat the baseline on both datasets. Combined strategies outperformed all other methods in terms of ALC, outperforming the baseline by over 0.05 ALC for both datasets and reducing 58% annotation efforts in the best case. While representative strategies performed well, their performance was matched or outperformed by the combined methods. Our proposed AL method dynamic β shows promising ability to achieve near-optimal performance across 2 datasets. Discussion Our visual analysis of query patterns indicates that strategies which efficiently obtain a representative subsample perform better on this task. Conclusion Active learning is shown to be effective at reducing annotation costs for filtering incorrect semantic predications from SemMedDB. Our proposed AL method demonstrated promising performance.


2017 ◽  
Vol 68 ◽  
pp. 150-166 ◽  
Author(s):  
Trevor Cohen ◽  
Dominic Widdows

2016 ◽  
Vol 23 (4) ◽  
pp. 758-765 ◽  
Author(s):  
Safa Fathiamini ◽  
Amber M Johnson ◽  
Jia Zeng ◽  
Alejandro Araya ◽  
Vijaykumar Holla ◽  
...  

Abstract Introduction Genomic profiling information is frequently available to oncologists, enabling targeted cancer therapy. Because clinically relevant information is rapidly emerging in the literature and elsewhere, there is a need for informatics technologies to support targeted therapies. To this end, we have developed a system for Automated Identification of Molecular Effects of Drugs, to help biomedical scientists curate this literature to facilitate decision support. Objectives To create an automated system to identify assertions in the literature concerning drugs targeting genes with therapeutic implications and characterize the challenges inherent in automating this process in rapidly evolving domains. Methods We used subject-predicate-object triples (semantic predications) and co-occurrence relations generated by applying the SemRep Natural Language Processing system to MEDLINE abstracts and ClinicalTrials.gov descriptions. We applied customized semantic queries to find drugs targeting genes of interest. The results were manually reviewed by a team of experts. Results Compared to a manually curated set of relationships, recall, precision, and F2 were 0.39, 0.21, and 0.33, respectively, which represents a 3- to 4-fold improvement over a publically available set of predications (SemMedDB) alone. Upon review of ostensibly false positive results, 26% were considered relevant additions to the reference set, and an additional 61% were considered to be relevant for review. Adding co-occurrence data improved results for drugs in early development, but not their better-established counterparts. Conclusions Precision medicine poses unique challenges for biomedical informatics systems that help domain experts find answers to their research questions. Further research is required to improve the performance of such systems, particularly for drugs in development.


2014 ◽  
Vol 49 ◽  
pp. 134-147 ◽  
Author(s):  
Rui Zhang ◽  
Michael J. Cairelli ◽  
Marcelo Fiszman ◽  
Graciela Rosemblat ◽  
Halil Kilicoglu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document