crustal origin
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 15)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Huan Trinh Dinh ◽  
Tri Luu Cong ◽  
Anh Nguyen Tuan ◽  
Anh Tran Viet ◽  
Giang Phan Hoang ◽  
...  

Abundant granitoids aged 24.59 Ma to 28.62 Ma were exposed along Phu Hoat high metamorphic zone, northern of the Truong Son belt, termed Na Khoun complex in Northern Laos (NL) and Ban Chieng complex in Western Vietnam (WV). Ten granitic samples were collected from these complexes show geochemical characteristics of high SiO2 and K2O contents, medium peraluminous that belong to S-type granites. Initial 87Sr/86Sr isotopic ratios and εNd(t) are broad values of 0.708507 to 0.74539 and -5.22 to -12.66, respectively, together with high 206Pb/204Pb (18.864-19.392), 207Pb/204Pb (15.736-15.841) and 208Pb/204Pb (39.224-40.080) which indicated crustal origin, we suggest that the NL-WV intrusion was associated with transpression form by the India-Asia collision events during Cenozoic.


Author(s):  
Réka Boga ◽  
Ágnes Keresztesi ◽  
Zsolt Bodor ◽  
Szende Tonk ◽  
Róbert Szép ◽  
...  

AbstractObservations of particulate matter less than 10 µm (PM10) were conducted from January to December in 2015 in the Ciuc basin, Eastern Carpathians, Romania. Daily concentrations of PM10 ranged from 10.90 to 167.70 µg/m3, with an annual mean concentration of 46.31 µg/m3, which is higher than the European Union limit of 40 µg/m3. Samples were analyzed for a total of 21 elements. O, C and Si were the most abundant elements accounting for about 85% of the PM10 mass. Source identification showed that the elemental composition of PM10 is represented by post volcanic activity, crustal origin, and anthropogenic sources, caused by the resuspension of crustal material, sea salt and soil dust. The average PM10 composition was 72.10% soil, 20.92% smoke K, 13.84% salt, 1.53% sulfate and 1.02% organic matter. The back-trajectory analysis showed that the majority of PM10 pollution comes from the West, Southwest and South.


2021 ◽  
Vol 176 (2) ◽  
Author(s):  
Valentin R. Troll ◽  
Graeme R. Nicoll ◽  
Robert M. Ellam ◽  
C. Henry Emeleus ◽  
Tobias Mattsson

AbstractThe Loch Bà ring-dyke and the associated Centre 3 granites represent the main events of the final phase of activity at the Palaeogene Mull igneous complex. The Loch Bà ring-dyke is one of the best exposed ring-intrusions in the world and records intense interaction between rhyolitic and basaltic magma. To reconstruct the evolutionary history of the Centre 3 magmas, we present new major- and trace-element, and new Sr isotope data as well as the first Nd and Pb isotope data for the felsic and mafic components of the Loch Bà intrusion and associated Centre 3 granites. We also report new Sr, Nd and Pb isotope data for the various crustal compositions from the region, including Moine and Dalradian metasedimentary rocks, Lewisian gneiss, and Iona Group metasediments. Isotope data for the Loch Bà rhyolite (87Sr/86Sri = 0.716) imply a considerable contribution of local Moine-type metasedimentary crust (87Sr/86Sr = 0.717–0.736), whereas Loch Bà mafic inclusions (87Sr/86Sri = 0.704–0.707) are closer to established mantle values, implying that felsic melts of dominantly crustal origin mixed with newly arriving basalt. The Centre 3 microgranites (87Sr/86Sri = 0.709–0.716), are less intensely affected by crustal assimilation relative to the Loch Bá rhyolite. Pb-isotope data confirm incorporation of Moine metasediments within the Centre 3 granites. Remarkably, the combined Sr–Nd–Pb data indicate that Centre 3 magmas record no detectable interaction with underlying deep Lewisian gneiss basement, in contrast to Centre 1 and 2 lithologies. This implies that Centre 3 magmas ascended through previously depleted or insulated feeding channels into upper-crustal reservoirs where they resided within and interacted with fertile Moine-type upper crust prior to eruption or final emplacement.


2021 ◽  
Vol 325 ◽  
pp. 01012
Author(s):  
Anang Sahroni ◽  
Leni Sophia Heliani ◽  
Cecep Pratama ◽  
Hidayat Panuntun ◽  
Wiwit Suryanto

Eastern Indonesia is tectonically complex, formed by different plates and microplates interactions from different origins. This complexity gives geoscientists a challenge to solve the ’jigsaw’ of the complex interactions. The understanding of tectonic processes can lead to a breakthrough in both resource exploration and disaster risk reduction. We utilize teleseismic P wave coda for random coda from scattering and deterministic coda originated from the crust-mantle boundary (Moho) to derive the crustal properties, including thickness, Vp/Vs, and qualitative scattering characteristics. For the scattering properties, we apply Iterative Cross-Correlation and Stacking (ICCS) to align the waveform. At the same time, for the crust characteristic, we employ the Receiver Functions (RF) method alongside H-k stacking. The crustal thickness recovered from the RF and H-k stacking has a good correlation with the crustal origin, where the thickness in older and stable crust originated from Sundaland and Gondwana is thicker than a younger plate of the crust arc and subduction origin. The Vp/Vs is high in a region that is interpreted to be dominated by mafic lower crust originated from oceanic-oceanic subduction during Eocene, anisotropy, or by a magmatic anomaly. The P coda also correlated well with the subsurface magmatic anomaly by providing a unique pattern.


2021 ◽  
Author(s):  
Diego F. Narváez ◽  
Pablo Samaniego ◽  
Kenneth Koga ◽  
Estelle Rose-Koga ◽  
Silvana Hidalgo ◽  
...  

2020 ◽  
Vol 10 (23) ◽  
pp. 8464
Author(s):  
Nikolaos Barmparesos ◽  
Dikaia Saraga ◽  
Sotirios Karavoltsos ◽  
Thomas Maggos ◽  
Vasiliki D. Assimakopoulos ◽  
...  

Research on air quality issues in recently refurbished educational buildings is relatively limited. However, it is an important topic as students are often exposed to high concentrations of air pollutants, especially in urban environments. This study presents the results of a 25-day experimental campaign that took place in a primary school located in a densely built-up area, which retains a green roof system (GRS). All measurements refer to mass concentrations and chemical analysis of PM10 (particulate matter less than 10 micrometers), and they were implemented simultaneously on the GRS and within the classroom (C3) below during different periods of the year. The results demonstrated relatively low levels of PM10 in both experimental points, with the highest mean value of 72.02 μg m−3 observed outdoors during the cold period. Elemental carbon (EC) was also found be higher in the ambient environment (with a mean value of 2.78 μg m−3), while organic carbon (OC) was relatively balanced between the two monitoring sites. Moreover, sulfate was found to be the most abundant water soluble anion (2.57 μg m−3), mainly originating from ambient primary SO2 and penetrating into the classroom from windows. Additionally, the crustal origin of particles was shown in trace metals, where Al and Fe prevailed (9.55% and 8.68%, respectively, of the total PM10). Nevertheless, infiltration of outdoor particles within the classroom was found to affect indoor sources of metals. Finally, source apportionment using a positive matrix factorization (PMF) receptor model demonstrated six main factors of emissions, the most important of which were vehicles and biomass burning (30.30% contribution), along with resuspension of PM10 within the classroom from human activities (29.89% contribution). Seasonal variations seem to play a key role in the results.


2020 ◽  
Vol 216 (4) ◽  
Author(s):  
David A. Rothery ◽  
Matteo Massironi ◽  
Giulia Alemanno ◽  
Océane Barraud ◽  
Sebastien Besse ◽  
...  

Abstract BepiColombo has a larger and in many ways more capable suite of instruments relevant for determination of the topographic, physical, chemical and mineralogical properties of Mercury’s surface than the suite carried by NASA’s MESSENGER spacecraft. Moreover, BepiColombo’s data rate is substantially higher. This equips it to confirm, elaborate upon, and go beyond many of MESSENGER’s remarkable achievements. Furthermore, the geometry of BepiColombo’s orbital science campaign, beginning in 2026, will enable it to make uniformly resolved observations of both northern and southern hemispheres. This will offer more detailed and complete imaging and topographic mapping, element mapping with better sensitivity and improved spatial resolution, and totally new mineralogical mapping. We discuss MESSENGER data in the context of preparing for BepiColombo, and describe the contributions that we expect BepiColombo to make towards increased knowledge and understanding of Mercury’s surface and its composition. Much current work, including analysis of analogue materials, is directed towards better preparing ourselves to understand what BepiColombo might reveal. Some of MESSENGER’s more remarkable observations were obtained under unique or extreme conditions. BepiColombo should be able to confirm the validity of these observations and reveal the extent to which they are representative of the planet as a whole. It will also make new observations to clarify geological processes governing and reflecting crustal origin and evolution. We anticipate that the insights gained into Mercury’s geological history and its current space weathering environment will enable us to better understand the relationships of surface chemistry, morphologies and structures with the composition of crustal types, including the nature and mobility of volatile species. This will enable estimation of the composition of the mantle from which the crust was derived, and lead to tighter constraints on models for Mercury’s origin including the nature and original heliocentric distance of the material from which it formed.


2020 ◽  
Vol 57 (6) ◽  
pp. 681-697
Author(s):  
Min Li ◽  
Houtian Xin ◽  
Bangfang Ren ◽  
Yunwei Ren ◽  
Wengang Liu

The geochemistry and Sr–Nd isotope, zircon U–Pb, and zircon Hf isotope compositions are reported for monzogranites and granodiorites from the Hazhu area in the northern Beishan orogen, northwestern China. Zircon U–Pb dating yielded ages of 270.1 ± 1.1 and 277.4 ± 1.2 Ma for the monzogranites and 263.6 ± 1.2 and 262.2 ± 1.1 Ma for the granodiorites. These monzogranites and granodiorites are metaluminous to weakly peraluminous I-type and belong to mid-K calc-alkaline and high-K calc-alkaline series. They exhibit high Mg# values and moderate degrees of differentiation (D.I. = 70.7–88.1). They are enriched in large-ion lithophile elements and light rare earth elements and depleted in high field strength elements. They show high (87Sr/86Sr)i ratios of 0.6995–0.7070 and high εNd(t) values of 4.37–5.70 with Nd model ages (TDM) of 522–789 Ma, suggesting a juvenile crustal origin. Furthermore, their εHf(t) values are all positive, and Hf isotopic crustal model ages ([Formula: see text] = 394–1097 Ma) also indicate a juvenile crustal origin. According to the data obtained in this study and other regional geological data acquired recently, the Hazhu granitoids were derived from common sources of melting from the Neoproterozoic to late Paleozoic juvenile crusts. The younger intrusions (granodiorites) are more basic, likely as a result of more juvenile lower crust being melted along with asthenospheric upwelling, which led to the addition of more basic components. These granitoids formed in a post-collisional setting. The tectonic regime transformed from an arc-related compressional setting to post-collisional extension, likely as a result of lithospheric extension and thinning in response to oceanic lithospheric delamination. These granitoids in the northern Beishan orogen were probably emplaced in a post-collisional extensional setting and suggest vertical continental crustal growth in the southern Central Asian Orogenic Belt.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 478
Author(s):  
Andrey K. Litvinenko ◽  
Elena S. Sorokina ◽  
Tobias Häger ◽  
Yuri A. Kostitsyn ◽  
Roman E. Botcharnikov ◽  
...  

The Snezhnoe ruby deposit is located in the Muzkol–Rangkul anticlinorium within the Cimmerian zone of the Central Pamir. On the local scale, the deposit occurs on discrete relict bedding planes of calcitic marbles belonging to the Sarydzhilgin suite. Four ruby-bearing mineral assemblages are present within the main parts of the deposit: (1) scapolite + phlogopite + muscovite + margarite; (2) plagioclase + muscovite + margarite; (3) muscovite + phlogopite + margarite; (4) calcite. The ruby + calcite association is the most economically important, whereas the association of plagioclase + scapolite + phlogopite + muscovite is typical for the ruby-free parts of the deposit. Mica group minerals with a distinctive green color due to enhanced Cr and V concentrations are the main prospecting indicators for the ruby mineralization. The oxygen isotopic composition of the rubies is +15.3‰, a common value for crustal metamorphic and sedimentary rocks. The ratios of indicative trace elements in the rubies are Ga/Mg < 8.2, Fe/Mg < 51.2, Cr/Ga > 6.9 and Fe/Ti < 31.6. These values are characteristic for metamorphic corundum. The bulk ruby-bearing rocks have an initial 87Sr/86Sr ratio of ~0.70791 and εNd of ~−9.6, also pointing to the crustal origin of the deposit in agreement with the geological data. Ancient Al-enriched sediments are suggested to be a possible protolith for the ruby-bearing rocks. The temperature of the metamorphic processes was estimated at 760 ± 30 °C using Zr-in-rutile geothermometry. Raman mapping of rutile inclusions trapped within the ruby crystal indicates that the minimum pressure of mineralization was about one kilobar. The age determined by the Rb–Sr thermal ionization mass spectrometry of phlogopite, plagioclase and bulk rock is 23 ± 1.6 Ma, corresponding to the timing of relaxation after peak metamorphism during the Alpine–Himalayan Orogeny.


Sign in / Sign up

Export Citation Format

Share Document