renal cell lines
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 6)

H-INDEX

14
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Xiong Liu ◽  
Rui Zhang ◽  
Mohammad Fatehi ◽  
Yifang Wang ◽  
Wentong Long ◽  
...  

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in membrane receptor PKD1 or cation channel PKD2. TACAN (also named TMEM120A), recently reported as an ion channel in neuron cells for mechano and pain sensing, is also distributed in diverse non-neuronal tissues such as kidney, heart and intestine, suggesting its involvement in other functions. In this study, we found that TACAN is in complex with PKD2 in native renal cell lines. Using the two-electrode voltage clamp in Xenopus oocytes we found that TACAN inhibited the channel activity of PKD2 gain-of-function mutant F604P. The first and last transmembrane domains of TACAN were found to interact with the PKD2 C- and N-terminal portions, respectively. We showed that the TACAN N-terminus acted as a blocking peptide and that TACAN inhibits the PKD2 function through the PKD2/TACAN binding. By patch clamping in mammalian cells, we found that TACAN inhibits both the single channel conductance and open probability of PKD2 and mutant F604P. Further, PKD2 co-expressed with TACAN, but not PKD2 alone, exhibited pressure sensitivity. In summary, this study revealed that TACAN acts as a PKD2 inhibitor and mediates mechano sensitivity of the PKD2/TACAN channel complex.


2021 ◽  
Vol 38 (9) ◽  
Author(s):  
Richard C. Zieren ◽  
Liang Dong ◽  
David J. Clark ◽  
Morgan D. Kuczler ◽  
Kengo Horie ◽  
...  

AbstractRenal cell carcinoma (RCC) accounts for over 400,000 new cases and 175,000 deaths annually. Diagnostic RCC biomarkers may prevent overtreatment in patients with early disease. Extracellular vesicles (EVs) are a promising source of RCC biomarkers because EVs carry proteins and messenger RNA (mRNA) among other biomolecules. We aimed to identify biomarkers and assess biological functions of EV cargo from clear cell RCC (ccRCC), papillary RCC (pRCC), and benign kidney cell lines. EVs were enriched from conditioned cell media by size exclusion chromatography. The EV proteome was assessed using Tandem Mass Tag mass spectrometry (TMT-MS) and NanoString nCounter technology was used to profile 770 cancer-related mRNA present in EVs. The heterogeneity of protein and mRNA abundance and identification highlighted the heterogeneity of EV cargo, even between cell lines of a similar pathological group (e.g., ccRCC or pRCC). Overall, 1726 proteins were quantified across all EV samples, including 181 proteins that were detected in all samples. In the targeted profiling of mRNA by NanoString, 461 mRNAs were detected in EVs from at least one cell line, including 159 that were present in EVs from all cell lines. In addition to a shared EV cargo signature, pRCC, ccRCC, and/or benign renal cell lines also showed unique signatures. Using this multi-omics approach, we identified 34 protein candidate pRCC EV biomarkers and 20 protein and 8 mRNA candidate ccRCC EV biomarkers for clinical validation.


2021 ◽  
Vol 70 ◽  
pp. 105042
Author(s):  
Katharina Schultrich ◽  
Fulya Oez ◽  
Nick Bergau ◽  
Thorsten Buhrke ◽  
Albert Braeuning

protocols.io ◽  
2020 ◽  
Author(s):  
Nuria Perretta-Tejedor ◽  
Grace Freke ◽  
Marian Seda ◽  
David. A. Long ◽  
Dagan Jenkins

2020 ◽  
Vol 21 (9) ◽  
pp. 3078
Author(s):  
Mojgan Naghizadeh Dehno ◽  
Yutao Li ◽  
Hans Weiher ◽  
Ingo G.H. Schmidt-Wolf

Cytokine-induced killer (CIK) cells are heterogeneous, major histocompatibility complex (MHC)-unrestricted T lymphocytes that have acquired the expression of several natural killer (NK) cell surface markers following the addition of interferon gamma (IFN-γ), OKT3 and interleukin-2 (IL-2). Treatment with CIK cells demonstrates a practical approach in cancer immunotherapy with limited, if any, graft versus host disease (GvHD) toxicity. CIK cells have been proposed and tested in many clinical trials in cancer patients by autologous, allogeneic or haploidentical administration. The possibility of combining them with specific monoclonal antibodies nivolumab and ipilimumab will further expand the possibility of their clinical utilization. Initially, phenotypic analysis was performed to explore CD3, CD4, CD56, PD-1 and CTLA-4 expression on CIK cells and PD-L1/PD-L2 expression on tumor cells. We further treated CIK cells with nivolumab and ipilimumab and measured the cytotoxicity of CIK cells cocultured to renal carcinoma cell lines, A-498 and Caki-2. We observed a significant decrease in viability of renal cell lines after treating with CIK cells (p < 0.0001) in comparison to untreated renal cell lines and anti-PD-1 or anti-CTLA-4 treatment had no remarkable effect on the viability of tumor cells. Using CCK-8, Precision Count Beads™ and Cell Trace™ violet proliferation assays, we proved significant increased proliferation of CIK cells in the presence of a combination of anti-PD-1 and anti-CTLA-4 antibodies compared to untreated CIK cells. The IFN-γ secretion increased significantly in the presence of A-498 and combinatorial blockade of PD-1 and CTLA-4 compared to nivolumab or ipilimumab monotreatment (p < 0.001). In conclusion, a combination of immune checkpoint inhibition with CIK cells augments cytotoxicity of CIK cells against renal cancer cells.


Author(s):  
Nuria Perretta-Tejedor ◽  
Grace Freke ◽  
Marian Seda ◽  
David A. Long ◽  
Dagan Jenkins

2018 ◽  
Vol 13 (7) ◽  
Author(s):  
Jennifer Leigh ◽  
Smriti Juriasingani ◽  
Masoud Akbari ◽  
Peng Shao ◽  
Manujendra N. Saha ◽  
...  

Introduction: Patients suffering from chronic kidney disease (CKD) experience a number of associated comorbidities, including anemia. Relative deficiency in renal erythropoietin (EPO) production is thought to be a primary cause of anemia. Interestingly, CKD patients display low levels of hydrogen sulfide (H2S), an endogenously derived renal oxygen sensor. Previous in vitro experiments have revealed that H2S-deficient renal cell lines produce less EPO than wild-type renal cell lines during hypoxia.Methods: We postulated that H2S might be a primary mediator of EPO synthesis during hypoxia, which was tested using an in vivo murine model of whole-body hypoxia and in clinical samples obtained from CKD patients.Results: Following a 72-hour period of hypoxia (11% O2), partial H2S knockout mice (lacking the H2S biosynthetic enzyme cystathionine γ-lyase [CSE]) displayed lower levels of hemoglobin, EPO and cystathionine-β-synthase (CBS) (another H2S biosynthetic enzyme) compared to wild-type mice, all of which was rescued by exogenous H2S supplementation. We also found that anemic CKD patients requiring exogenous EPO exhibited lower urinary thiosulfate levels compared to non-anemic CKD patients of similar CKD classification.Conclusions: Together, our results confirm an interplay between the actions of H2S during hypoxia and EPO production.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Stefan Winter ◽  
Pascale Fisel ◽  
Florian Büttner ◽  
Steffen Rausch ◽  
Debora D’Amico ◽  
...  

2016 ◽  
Vol 85 (2) ◽  
pp. 69-74 ◽  
Author(s):  
Martina Vrbová ◽  
Eva Dastychová ◽  
Tomáš Roušar

2015 ◽  
Vol 39 (1) ◽  
pp. 28-34
Author(s):  
A. F. Ferreira ◽  
F. D. França ◽  
J. V. Rossoni ◽  
P. H. L. Viana ◽  
K. C. M. Moraes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document