scholarly journals Increase in Efficacy of Checkpoint Inhibition by Cytokine-Induced-Killer Cells as a Combination Immunotherapy for Renal Cancer

2020 ◽  
Vol 21 (9) ◽  
pp. 3078
Author(s):  
Mojgan Naghizadeh Dehno ◽  
Yutao Li ◽  
Hans Weiher ◽  
Ingo G.H. Schmidt-Wolf

Cytokine-induced killer (CIK) cells are heterogeneous, major histocompatibility complex (MHC)-unrestricted T lymphocytes that have acquired the expression of several natural killer (NK) cell surface markers following the addition of interferon gamma (IFN-γ), OKT3 and interleukin-2 (IL-2). Treatment with CIK cells demonstrates a practical approach in cancer immunotherapy with limited, if any, graft versus host disease (GvHD) toxicity. CIK cells have been proposed and tested in many clinical trials in cancer patients by autologous, allogeneic or haploidentical administration. The possibility of combining them with specific monoclonal antibodies nivolumab and ipilimumab will further expand the possibility of their clinical utilization. Initially, phenotypic analysis was performed to explore CD3, CD4, CD56, PD-1 and CTLA-4 expression on CIK cells and PD-L1/PD-L2 expression on tumor cells. We further treated CIK cells with nivolumab and ipilimumab and measured the cytotoxicity of CIK cells cocultured to renal carcinoma cell lines, A-498 and Caki-2. We observed a significant decrease in viability of renal cell lines after treating with CIK cells (p < 0.0001) in comparison to untreated renal cell lines and anti-PD-1 or anti-CTLA-4 treatment had no remarkable effect on the viability of tumor cells. Using CCK-8, Precision Count Beads™ and Cell Trace™ violet proliferation assays, we proved significant increased proliferation of CIK cells in the presence of a combination of anti-PD-1 and anti-CTLA-4 antibodies compared to untreated CIK cells. The IFN-γ secretion increased significantly in the presence of A-498 and combinatorial blockade of PD-1 and CTLA-4 compared to nivolumab or ipilimumab monotreatment (p < 0.001). In conclusion, a combination of immune checkpoint inhibition with CIK cells augments cytotoxicity of CIK cells against renal cancer cells.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3714-3714 ◽  
Author(s):  
Lei Wu ◽  
Peter Schafer ◽  
George Muller ◽  
David Stirling ◽  
J. Blake Bartlett

Abstract Lenalidomide (Revlimid® is approved for the treatment of transfusion-dependent patients with anemia due to low- or intermediate-1-risk MDS associated with a del 5q cytogenetic abnormality with or without additional cytogenetic abnormalities, and in combination with dexamethasone is for the treatment of multiple myeloma patients who have received at least one prior therapy. Encouraging early results suggest a potential for clinical efficacy in B cell non-Hodgkin’s lymphoma (NHL). Potential mechanisms of action include anti-angiogenic, anti-proliferative and immunomodulatory activities. Lenalidomide has been shown to enhance Th1-type cytokines and T cell and NK cell activation markers in patients with advanced cancers. Furthermore, lenalidomide has been shown to enhance rituximab-mediated protection in a SCID mouse lymphoma model in vivo. We have utilized an in vitro ADCC system to assess the ability of lenalidomide to directly enhance human NK cell function in response to therapeutic antibodies, such as rituximab (chimeric anti-CD20 mAb). Isolated NK cells produced little or no IFN-γ in response to IgG and/or IL-2 or IL-12. However, pre-treatment of NK cells with lenalidomide greatly enhanced IFN-γ production by NK cells in a dose-dependent manner. In a functional ADCC assay, NHL cell lines (Namalwa, Farage & Raji) were pre-coated with rituximab and exposed to NK cells pre-treated with lenalidomide in the presence of either exogenous IL-2 or IL-12. After 4 hours in culture the viability of the tumor cells was assessed. Lenalidomide consistently and synergistically increased the killing of tumor cells in a dose-dependent manner and up to >4-fold compared to rituximab alone. Rituximab alone had only a small effect in this model and there was no killing of cells in the absence of rituximab. The presence of either exogenous IL-2 or IL-12 was required to see enhanced killing by lenalidomide. In cancer patients lenalidomide has been shown to increase serum IL-12 levels and is also known to induce IL-2 production by T cells in vitro. Potential mechanisms for enhanced ADCC include increased signaling through NK FCγ receptors and/or IL-2 or IL-12 receptors. However, we found that these receptors are unaffected by lenalidomide, although downstream effects on NK signaling pathways are likely and are being actively investigated. In conclusion, we have shown that lenalidomide strongly enhances the ability of rituximab to induce ADCC mediated killing of NHL cells in vitro. This provides a strong rationale for combination of these drugs in patients with NHL and CLL.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3472-3472
Author(s):  
Roberto Bellucci ◽  
Allison Martin ◽  
Davide Bommarito ◽  
Kathy S. Wang ◽  
Gordon J Freeman ◽  
...  

Abstract NK cells are the primary effectors of the innate immune response against infections pathogens and malignant transformation through their efficient cytolytic activity and cytokine secretion. Nevertheless, tumor cells have developed mechanisms to evade innate immune surveillance and the molecular basis for target resistance to NK cell-mediated lysis is not yet completely understood. To identify novel pathways that modulate tumor cell resistance to NK cells, we previously developed a cell-cell interaction based screening approach using a large sub-set of a lentiviral shRNA library containing multiple independent shRNAs targeting more than 1,000 human genes. Using this approach we found that silencing JAK1 and JAK2 significantly increased secretion of INF-γ from NK cells and increased tumor cell susceptibility to NK cell lysis. To examine the role of the JAK signaling pathway in the modulation of tumor cell susceptibility to NK lysis, we analyzed down-stream signaling pathways in several cell lines (IM9, U937, K562, RPMI, MM1S KM12BM) and primary tumor cells (AML, MM, ALL). In the absence of NK cells, silencing JAK1 or JAK2 did not affect the basal activation of STAT proteins (STAT1(pY701), STAT1(pS727), STAT3(pY705), STAT3(pS727), STAT4(pY693), STAT5(pY694), STAT6(pY641)) or AKT(pS473) and ERK1/2(pT202/pY204) or expression of activating or inhibitory ligands on tumor cells. Because JAK1 and JAK2 transduce signals downstream of the IFN-γ receptor, we hypothesized that JAKs may play a role in tumor cell evasion of NK cell activities such as cytolysis and IFN-γ secretion. To test this hypothesis we pre-incubated various tumor cell lines or primary tumor cells with activated NK supernatant or recombinant human IFN-γ. Tumor cell activation in this fashion resulted in activation of STAT1 (pSTAT1(pY701)) but none of the other STATs, ERK or AKT. As expected, STAT1 activation was blocked when JAK1 or JAK2 were silenced or inhibited by a JAK inhibitor. Silencing of STAT1 with 2 independent shRNAs also resulted in increased tumor susceptibility to NK cell cytolysis in 3 different tumor cell lines tested. To confirm that IFN-γ secreted by activated NK cells induced resistance in tumor cell targets we used a blocking IFN-γ antibody (D9D10). 10μg/ml D9D10 completely blocked STAT1 phosphorylation and in different experiments using U937, IM-9, KM12BM, MM1S and RPMI we found that D9D10 significantly increased specific NK target cell lysis by 51.8%, 78.5%, 25.1%, 20.6% and 28.5% compared to IgG1 isotype controls. Similar results were obtained whit different primary tumor cells. To determine whether IFN-γ stimulation affected expression of ligands involved in NK cell recognition of tumor cells, we analyzed the effect of activated NK supernatant or IFN-γ on the expression of MHC Class I, β2M, HLA-C, HLA-A2, NKG2D, NKP44, NKP46, NKP30 ligands using chimeric FC proteins, MICA/B, DNAM-1 ligands (CD112, CD155), 2B4 ligand (CD48), TRAIL ligands (TRAIL-R1, TRAIL-R2), Fas ligand (CD95) and PD1 ligands (PDL1, PDL2, B7H3, B7H4). The basal expression of these ligands varied among the various tumor cell lines or primary tumors tested but the only ligand that was significantly up-regulated in every tumor sample tested was PDL1. PDL1 expression by tumor cells is known to inhibit T cell immunity. To test whether increased levels of PDL1 could also inhibit NK cell killing, we co-cultured primary NK cells with U937, IM9, KM12BM, RPMI, K562, MM1S, primary MM, AML and ALL cells with or without 10μg/ml anti-PDL1 antibody (recombinant mab with Fc mutated to eliminate FcR-mediated effects). Blocking PDL1 significantly increased NK cell killing of U937, IM9, KM12BM, RPMI, MM, AML and ALL (p=0.03, p=0.02, p=0.03, p=0.005, p=0.009, p=0.03 and p=0.02 respectively). NK cell killing activity did not further increase when a JAK inhibitor was added to the co-culture. These results show that NK cell secretion of IFN-γ results in IFN receptor signaling and activation of JAK1, JAK2 and STAT1 in the tumor cell targets, followed by rapid up-regulation of PDL1 expression and increased resistance to NK cell lysis. Blockade of JAK pathway activation prevents subsequent PDL1 up-regulation resulting in increased susceptibility of tumor cells to NK cell activity suggesting that JAK pathway inhibitors may work synergistically with other immunotherapy regimens by eliminating IFN-induced PDL1 mediated immunoinhibition. Disclosures: Freeman: Bristol-Myers-Squibb/Medarex: Patents & Royalties; Roche/Genentech: Patents & Royalties; Merck: Patents & Royalties; EMD-Serrono: Patents & Royalties; Boehringer-Ingelheim: Patents & Royalties; Amplimmune: Patents & Royalties; CoStim Pharmaceuticals: Patents & Royalties; Costim Pharmaceuticals: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2004 ◽  
Vol 104 (1) ◽  
pp. 170-177 ◽  
Author(s):  
Takehito Igarashi ◽  
Jason Wynberg ◽  
Ramprasad Srinivasan ◽  
Brian Becknell ◽  
J. Phillip McCoy ◽  
...  

Abstract Cellular inactivation through killer immunoglobulin-like receptors (KIRs) may allow neoplastic cells to evade host natural killer (NK) cell–mediated immunity. Recently, alloreactive NK cells were shown to mediate antileukemic effects against acute myelogenous leukemia (AML) after mismatched transplantation, when KIR ligand incompatibility existed in the direction of graft-versus-host disease (GVHD). Therefore, we investigated whether solid tumor cells would have similar enhanced susceptibility to allogeneic KIR-incompatible NK cells compared with their KIR-matched autologous or allogeneic counterparts. NK populations enriched and cloned from the blood of cancer patients or healthy donors homozygous for HLA-C alleles in group 1 (C-G1) or group 2 (C-G2) were tested in vitro for cytotoxicity against Epstein-Barr virus–transformed lymphoblastic cell lines (EBV-LCLs), renal cell carcinoma (RCC), and melanoma (MEL) cells with or without a matching KIR-inhibitory HLA-C ligand. Allogeneic NK cells were more cytotoxic to tumor targets mismatched for KIR ligands than their KIR ligand–matched counterparts. Bulk NK populations (CD3–/CD2+/CD56+) expanded 104-fold from patients homozygous for C-G1 or C-G2 had enhanced cytotoxicity against KIR ligand–mismatched tumor cells but only minimal cytotoxicity against KIR ligand–matched targets. Further, NK cell lines from C-G1 or C-G2 homozygous cancer patients or healthy donors expanded but failed to kill autologous or KIR-matched MEL and RCC cells yet had significant cytotoxicity (more than 50% lysis at 20:1 effector-target [E/T] ratio) against allogeneic KIR-mismatched tumor lines. These data suggest immunotherapeutic strategies that use KIR-incompatible allogeneic NK cells might have superior antineoplastic effects against solid tumors compared with approaches using autologous NK cells.


2020 ◽  
Author(s):  
Yung Yu Wong ◽  
Luke Riggan ◽  
Edgar Perez-Reyes ◽  
Christopher Huerta ◽  
Matt Moldenhauer ◽  
...  

AbstractNatural killer (NK) cells are innate lymphocytes that constantly patrol host tissues against transformed cells in a process known as cancer immunosurveillance. Previous evidence in mice has demonstrated that NK cell-derived IFN-γ can promote immunoevasion by sculpting the immunogenicity of developing tumors in a process known as cancer immunoediting. This process involves the elimination of highly immunogenic “unedited” tumor cells followed by the eventual escape of less immunogenic “edited” tumor cell variants that are able to escape recognition or elimination by the immune system. Here, we show that NK cell-edited fibrosarcomas decrease the expression of 17 conserved IFN-γ-inducible genes compared to unedited tumor cells. High expression of 3 of these identified genes (Psmb8, Trim21, Parp12) in human tumor samples correlates with enhanced survival in breast cancer, melanoma, and sarcoma patients. While NK cell-edited fibrosarcomas displayed resistance to IFN-γ growth suppression in vitro, functional knockouts of individual interferon stimulated genes (ISGs) were not required for outgrowth of unedited tumor cell lines in vitro and in vivo compared to complete loss of IFN signaling. Furthermore, knockout of IFN-γ-intrinsic signaling via deletion of Ifngr in edited B16 F10 and E0771 LMB metastatic cancer cell lines did not impact host survival following lung metastasis. Together, these results suggest that unedited tumors can be selected for decreased IFN-γ signaling to evade immune responses in vivo, and as a consequence, tumor-extrinsic IFN signaling may be more important for potentiating durable anti-tumor responses to advanced solid tumors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary Jo Rademacher ◽  
Anahi Cruz ◽  
Mary Faber ◽  
Robyn A. A. Oldham ◽  
Dandan Wang ◽  
...  

AbstractInterleukin-12 (IL-12) is an inflammatory cytokine that has demonstrated efficacy for cancer immunotherapy, but systemic administration has detrimental toxicities. Lentiviral transduction eliciting IL-12-producing human sarcoma for autologous reintroduction provides localized delivery for both innate and adaptive immune response augmentation. Sarcoma cell lines and primary human sarcoma samples were transduced with recombinant lentivirus engineering expression of human IL-12 (hu-IL-12). IL-12 expressing sarcomas were assessed in vitro and in vivo following implantation into humanized NSG and transgenic human IL-15 expressing (NSG.Tg(Hu-IL-15)) murine models. Lentiviral transduction (LV/hu-IL-12) of human osteosarcoma, Ewing sarcoma and rhabdomyosarcoma cell lines, as well as low-passage primary human sarcomas, engendered high-level expression of hu-IL-12. Hu-IL-12 demonstrated functional viability, eliciting specific NK cell-mediated interferon-γ (IFN-γ) release and cytotoxic growth restriction of spheroids in vitro. In orthotopic xenograft murine models, the LV/hu-IL-12 transduced human sarcoma produced detectable IL-12 and elicited an IFN-γ inflammatory immune response specific to mature human NK reconstitution in the NSG.Tg(Hu-IL-15) model while restricting tumor growth. We conclude that LV/hu-IL-12 transduction of sarcoma elicits a specific immune reaction and the humanized NSG.Tg(Hu-IL-15) xenograft, with mature human NK cells, can define in vivo anti-tumor effects and systemic toxicities. IL-12 immunomodulation through autologous tumor transduction and reintroduction merits exploration for sarcoma treatment.


1990 ◽  
Vol 8 (3) ◽  
pp. 460-467 ◽  
Author(s):  
R L Krigel ◽  
K A Padavic-Shaller ◽  
A R Rudolph ◽  
M Konrad ◽  
E C Bradley ◽  
...  

Preclinical data have demonstrated synergy between interleukin-2 (IL-2) and beta-interferon (IFN-beta) in stimulating natural-killer (NK) cell activity and in increasing expression of IL-2 receptors. Based on results of a phase I trial, a combination of IL-2 and IFN-beta was administered three times weekly by intravenous (IV) bolus injection with 5 x 10(6) Cetus U/m2 of IL-2 and 6 x 10(6) U/m2 of IFN-beta to 24 patients with advanced renal cell carcinoma (RCC). Of 22 assessable patients there were six (27%) objective responses including one complete remission (CR) and five partial responses (PRs). There were three minor responses (MRs), 11 stable disease (SD), and two progressive disease (PD). Two of the objective responses have continued for almost 2 years. Response sites include lymph nodes, lungs, and bone. Toxicities requiring dose reduction include arthralgia, weight loss, fatigue, decreased performance status, depression, and hypotension. Five of 10 patients who had a prior nephrectomy without local recurrence achieved an objective response as compared with only one of 12 without a prior nephrectomy or with a local recurrence (P = .04). Mean peak lymphokine-activated killer (LAK) cell activity of the objective responders was 88 lytic units (LU) as compared with 4 LU in the nonresponders (P = .01). Mean peak NK cell activity was 288 LU in the objective responders as compared with 100 LU in the nonresponders (P = .10).(ABSTRACT TRUNCATED AT 250 WORDS)


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3647-3653 ◽  
Author(s):  
Todd A. Fehniger ◽  
William E. Carson ◽  
Ewa Mrózek ◽  
Michael A. Caligiuri

Abstract The administration of low dose interleukin-2 (IL-2) results in a selective expansion of natural killer (NK) cells in vivo, and promotes the differentiation of NK cells from hematopoietic precursor cells in vitro. We have previously shown that stem cell factor (SCF ), the ligand to the c-kit tyrosine kinase receptor, enhances IL-2–induced NK cell proliferation and differentiation in vitro. Here, we investigated the effects of SCF plus IL-2 delivered to mice in vivo. Eight-week-old C57BL/6 mice were treated with a continuous subcutaneous infusion of IL-2 (1 × 104 IU/d) plus a daily intraperitoneal dose of SCF (100 μg/kg/d), IL-2 alone, SCF alone, or vehicle alone for 8 weeks. The in vivo serum concentration of IL-2 ranged between 352 ± 12.0 pg/mL and 606 ± 9.0 pg/mL, achieving selective saturation of the high affinity IL-2 receptor, while the peak SCF serum concentration was 296 ± 13.09 ng/mL. Alone, the daily administration of SCF had no effect on the expansion of NK cells. The continuous infusion of IL-2 alone did result in a significant expansion of NK1.1+CD3− cells compared to mice treated with placebo or SCF. However, mice treated with both SCF and IL-2 showed an increase in the absolute number of NK cells that was more than twofold that seen with IL-2 alone, in the spleen (P ≤ .005), bone marrow (P ≤ .025), and blood (P < .05). NK cytotoxic activity against YAC-1 target cells was significantly higher for mice treated with SCF plus IL-2, compared to mice treated with IL-2 alone (P ≤ .0005). Interferon-γ (IFN-γ) production in cytokine-activated splenocytes was also greater for the SCF plus IL-2 group, over IL-2 treatment alone (P ≤ .01). The effect of SCF plus IL-2 on NK cell expansion was likely mediated via NK cell precursors, rather than mature NK cells. In summary, we provide the first evidence that SCF can significantly enhance expansion of functional NK cells induced by the prolonged administration of low dose IL-2 in vivo. Since the NK cell is a cytotoxic innate immune effector and a potent source of IFN-γ, this therapeutic strategy for NK cell expansion may serve to further enhance innate immune surveillance against malignant transformation and infection in the setting of cancer and/or immunodeficiency.


1991 ◽  
Vol 14 (3) ◽  
pp. 128-139 ◽  
Author(s):  
Christine Fauth ◽  
Danielle Chabard&egrave;s ◽  
Maria Allaz ◽  
Madeleine Garcia ◽  
Bernard Rossier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document