canopy drip
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Kazuki Nanko ◽  
Nobuaki Tanaka ◽  
Michael Leuchner ◽  
Delphis Levia

<p>Knowledge of throughfall erosivity is necessary for the accurate prediction of soil erosion in some forests with little protective ground cover. This study compared throughfall drops and erosivity between open rainfall and for four different crown positions in a teak plantation in Thailand. Throughfall was partitioned into free throughfall, splash throughfall, and canopy drip using drop size distributions of both open rainfall and throughfall. Relative to open rainfall, we found the following: (1) throughfall drops were lower in number but larger in size due to the coalescence of raindrops on canopies; (2) throughfall drops, especially canopy drip, had lower velocity due to insufficient fall distance from the canopy to the forest floor to reach terminal velocity, which partly depends on crown base height and the vertical distribution of foliage; and (3) throughfall usually had higher kinetic energy due to larger drop size, which depends on the amount of canopy drip and the crown base height. Mid-crown positions were subjected to higher throughfall kinetic energy than in the canopy gap or near-stem positions. Compared to mid-crown positions, the gap position had smaller drops and less canopy drip, while the near-stem position had lower drop fall velocity. The erosivity of throughfall with respect to crown position is useful in the development of high-resolution soil erosion risk maps that can help maintain forest productivity in teak plantations.</p><p>The work was funded by JSPS KAKENHI Grant numbers JP17780119, JP15H05626, and JP17KK0159 and the CREST Program of JST (Japan Science and Technology Agency). A part of the study is published in Nanko et al. (2020) doi:10.1007/978-3-030-26086-6_12. </p>


2020 ◽  
Vol 24 (9) ◽  
pp. 4675-4690
Author(s):  
Juan Pinos ◽  
Jérôme Latron ◽  
Kazuki Nanko ◽  
Delphis F. Levia ◽  
Pilar Llorens

Abstract. The major fraction of water reaching the forest floor is throughfall, which consists of free throughfall, splash throughfall and canopy drip. Research has shown that forest canopies modify the isotopic composition of throughfall by means of evaporation, isotopic exchange, canopy selection and mixing of rainfall waters. However, the effects of these factors in relation to throughfall isotopic composition and the throughfall drop size reaching the soil surface are unclear. Based on research in a mountainous Scots pine stand in northeastern Spain, this study sought to fill this knowledge gap by examining the isotopic composition of throughfall in relation to throughfall drop size. In the experimental stand, throughfall consisted on average of 65 % canopy drip, 19 % free throughfall and 16 % splash throughfall. The dynamics of the isotopic composition of throughfall and rainfall showed complex behaviour throughout events. The isotopic shift showed no direct relationship with meteorological variables, number of drops, drop velocities, throughfall and rainfall amount, or raindrop kinetic energy. However, the experiment did reveal that the isotopic shift was higher at the beginning of an event, decreasing as cumulative rainfall increased, and that it also increased when the median volume drop size of throughfall (D50_TF) approached or was lower than the median volume drop size of rainfall (D50_RF). This finding indicates that the major contribution of splash throughfall at the initial phase of rain events matched the highest vapour pressure deficit (VPD) and, at the same time, corresponded to higher isotopic enrichment, which implies that splash droplet evaporation occurred. Future applications of our approach will improve understanding of how throughfall isotopic composition may vary with drop type and size during rainfall events across a range of forest types.


2020 ◽  
Author(s):  
Juan Pinos ◽  
Jérôme Latron ◽  
Kazuki Nanko ◽  
Delphis F. Levia ◽  
Pilar Llorens

Abstract. The major fraction of water reaching the forest floor is throughfall, which consists of free throughfall, splash throughfall and canopy drip. Research has shown that forest canopies modify the isotopic composition of throughfall by means of evaporation, isotopic exchange, canopy selection and mixing of rainfall waters. However, the effects of these factors in relation to throughfall isotopic composition and the throughfall drop size reaching the soil surface are unclear. Based on research in a mountainous Scots pine stand in northeastern Spain, this study sought to fill this knowledge gap by examining the isotopic composition of throughfall in relation to throughfall drop size. In the experimental stand, throughfall consisted on average of 65 % canopy drip, 19 % free throughfall and 16 % splash throughfall. The dynamics of the isotopic composition of throughfall and rainfall showed complex behavior throughout events. The isotopic shift showed no direct relationship with meteorological variables, number of drops, drop velocities, throughfall and rainfall amount, or raindrop kinetic energy. However, the experiment did reveal that the isotopic shift was higher at the beginning of an event, decreasing as cumulative rainfall increased, and that it also increased when the median volume drop size of throughfall (D50_TF) approached or was lower than the median volume drop size of rainfall (D50_RF). This finding indicates that the major contribution of splash throughfall at the initial phase of rain events matched the highest vapor pressure deficit (VPD), and at the same time corresponded with higher isotopic enrichment, which implies that splash droplet evaporation occurred. Future applications of our approach will improve understanding of how throughfall isotopic composition may vary with drop type and size during rainfall events across a range of forest types.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 927
Author(s):  
Xu ◽  
Huai ◽  
Hamiti ◽  
Zhang ◽  
Zhao

Phytophthora species are well-known destructive forest pathogens, especially in natural ecosystems. The wild apple (Malus sieversii (Ledeb.) Roem.) is the primary ancestor of M. domestica (Borkh.) and important germplasm resource for apple breeding and improvement. During the period from 2016 to 2018, a survey of Phytophthora diversity was performed at four wild apple forest plots (Xin Yuan (XY), Ba Lian (BL), Ku Erdening (KE), and Jin Qikesai (JQ)) on the northern slopes of Tianshan Mountain in Xinjiang, China. Phytophthora species were isolated from baiting leaves from stream, canopy drip, and soil samples and were identified based on morphological observations and the rDNA internal transcribed spacer (ITS) sequence analysis. This is the first comprehensive study from Xinjiang to examine the Phytophthora communities in wild apple forests The 621 resulting Phytophthora isolates were found to reside in 10 different Phytophthora species: eight known species (P. lacustris being the most frequent, followed by P. gonapodyides, P. plurivora, P. gregata, P. chlamydospora, P. inundata, P. virginiana, and P. cactorum) and two previously unrecognized species (P. sp. CYP74 and P. sp. forestsoil-like). The highest species richness of Phytophthora occurred at BL, followed by XY. P. lacustris was the dominant species at BL, XY, and JQ, while P. gonapodyides was the most common at KE. In the present paper, the possible reasons for their distribution, associated implications, and associated diseases are discussed.


2015 ◽  
Vol 538 ◽  
pp. 600-610 ◽  
Author(s):  
Michaela Meyer ◽  
Winfried Schröder ◽  
Stefan Nickel ◽  
Sébastien Leblond ◽  
Antti-Jussi Lindroos ◽  
...  

2014 ◽  
Vol 190 ◽  
pp. 27-35 ◽  
Author(s):  
Mitja Skudnik ◽  
Zvonka Jeran ◽  
Franc Batič ◽  
Primož Simončič ◽  
Sonja Lojen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document