coal strength
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 14)

H-INDEX

6
(FIVE YEARS 2)

Author(s):  
Ting Liu ◽  
Baiquan Lin ◽  
Xuehai Fu ◽  
Ang Liu

AbstractAlthough a series of hypotheses have been proposed, the mechanism underlying coal and gas outburst remains unclear. Given the low-index outbursts encountered in mining practice, we attempt to explore this mechanism using a multiphysics coupling model considering the effects of coal strength and gas mass transfer on failure. Based on force analysis of coal ahead of the heading face, a risk identification index Cm and a critical criterion (Cm ≥ 1) of coal instability are proposed. According to this criterion, the driving force of an outburst consists of stress and gas pressure gradients along the heading direction of the roadway, whereas resistance depends on the shear and tensile strengths of the coal. The results show that outburst risk decreases slightly, followed by a rapid increase, with increasing vertical stress, whereas it decreases with increasing coal strength and increases with gas pressure monotonically. Using the response surface method, a coupled multi-factor model for the risk identification index is developed. The results indicate strong interactions among the controlling factors. Moreover, the critical values of the factors corresponding to outburst change depending on the environment of the coal seams, rather than being constants. As the buried depth of a coal seam increases, the critical values of gas pressure and coal strength decrease slightly, followed by a rapid increase. According to its controlling factors, outburst can be divided into stress-dominated, coal-strength-dominated, gas-pressure-dominated, and multi-factor compound types. Based on this classification, a classified control method is proposed to enable more targeted outburst prevention.


2021 ◽  
Vol 30 (3) ◽  
pp. 2179-2193
Author(s):  
Yongchen He ◽  
Pengxiang Zhao ◽  
Shugang Li ◽  
Chun-Hsing Ho ◽  
Sitao Zhu ◽  
...  

Author(s):  
V.S. Zaburdayev ◽  
◽  
Yu.А. Filippov ◽  

The conditions and features are given concerning the degassing of outburst-prone coal seams by wells drilled from the underground workings in the plane of the mined seam. Technological schemes for the location of wells in the mining areas during the preparation and development of the coal seams prone to sudden outbursts of coal and gas were substantiated taking into account the coal strength determined using the method of M.M. Protodyakonov. The scheme of coal seams degassing by wells oriented to the working face line is recommended with a coal strength factor f ≥ 1.3, the degassing scheme with crossed wells — at f < 1.3. The wells are drilled parallel to the working face line and oriented to it. The schemes are implemented in the shallow mines of Karaganda (Kazakhstan), Ukraine and China. Degassing of coal seams not unloaded from the rock pressure by crossing wells ensured an increase in methane production from 1 ton of coal by 0.4–4.8 m3 in the conditions of seams with different coal strength. The highest indicators were achieved in the powerful outburst-prone seams with a coal strength factor of f = 0.3–0.8 in the conditions of the mines of Karaganda Basin, where the volumes of methane extraction by crossing wells were 5.0–5.6 m3 per ton of the degassed coal reserves in the working areas. In the conditions of the outburst-prone shallow seams of Ukraine, the volumes of methane extraction from 1 ton of the degassed coal reserves on the medium density seams amounted to 2.5–4.4 m3 with a coal strength factor of f = 0.6–1.1. 2-2.3 m3 of methane was removed from 1 ton of coal at the Dziulishan mine (China) at a strongly crushed coal layer II1 with a strength factor f = 0.3–0.6. The use of degassing schemes for gas-bearing and outburst-prone coal seams ensures an increase in the productivity of working faces and, as a result, high economic indicators.


2020 ◽  
Vol 136 (11) ◽  
pp. 134-139
Author(s):  
Takashi TAKEHARA ◽  
Yasuki OIKAWA ◽  
Takashi FUJII ◽  
Kuniyuki MIYAZAKI

2020 ◽  
Vol 17 ◽  
pp. 103029 ◽  
Author(s):  
Yixin Zhao ◽  
Yingfeng Sun ◽  
Liang Yuan ◽  
Quan Xu

Sign in / Sign up

Export Citation Format

Share Document