Features of Borehole Degassing of the Outburst-prone Coal Seams

Author(s):  
V.S. Zaburdayev ◽  
◽  
Yu.А. Filippov ◽  

The conditions and features are given concerning the degassing of outburst-prone coal seams by wells drilled from the underground workings in the plane of the mined seam. Technological schemes for the location of wells in the mining areas during the preparation and development of the coal seams prone to sudden outbursts of coal and gas were substantiated taking into account the coal strength determined using the method of M.M. Protodyakonov. The scheme of coal seams degassing by wells oriented to the working face line is recommended with a coal strength factor f ≥ 1.3, the degassing scheme with crossed wells — at f < 1.3. The wells are drilled parallel to the working face line and oriented to it. The schemes are implemented in the shallow mines of Karaganda (Kazakhstan), Ukraine and China. Degassing of coal seams not unloaded from the rock pressure by crossing wells ensured an increase in methane production from 1 ton of coal by 0.4–4.8 m3 in the conditions of seams with different coal strength. The highest indicators were achieved in the powerful outburst-prone seams with a coal strength factor of f = 0.3–0.8 in the conditions of the mines of Karaganda Basin, where the volumes of methane extraction by crossing wells were 5.0–5.6 m3 per ton of the degassed coal reserves in the working areas. In the conditions of the outburst-prone shallow seams of Ukraine, the volumes of methane extraction from 1 ton of the degassed coal reserves on the medium density seams amounted to 2.5–4.4 m3 with a coal strength factor of f = 0.6–1.1. 2-2.3 m3 of methane was removed from 1 ton of coal at the Dziulishan mine (China) at a strongly crushed coal layer II1 with a strength factor f = 0.3–0.6. The use of degassing schemes for gas-bearing and outburst-prone coal seams ensures an increase in the productivity of working faces and, as a result, high economic indicators.

2021 ◽  
Author(s):  
Elvira Filatieva ◽  
◽  
Aleksandr Oleinichenko ◽  
Mykhailo Filatiev ◽  
Valerii Sokolenko ◽  
...  

A comparative analysis of the theoretical and practical definition of the category hazard of coal mines by gas factor based on experimental data obtained in real conditions of mining gas-bearing coal seams is presented. The mine's hazard category by gas factor is determined in accordance with the current regulatory document. The processing of experimental data obtained in field studies leads to contradictions in the requirements for the safe mining of gas-bearing coal seams. The necessity of changing the regulatory framework for predicting methane release and establishing the category hazard of mines by gas factor is substantiated, as well as the theoretical part of the research is experimentally confirmed and practical proposals are given to improve the requirements of regulatory documents for the safe mining of gas-bearing coal seams. The gas release from seven possible sources, the exposed surface of the working face, the undermined adjacent seams and their enclosing rocks, the overworked adjacent seams and enclosing rocks, the worked-out space of the stopped lavas, are accepted for consideration. The studies have shown that by removal the bottom from cut and the area of the mined-out space of the operated section and the wing of the mine field, taking into account the stopped longwalls, it is possible to predict the processes of rock displacement that determine the absolute gas release from the undermined sources.


Author(s):  
V.S. Brigida ◽  
◽  
Yu.V. Dmitrak ◽  
O.Z. Gabaraev ◽  
V.I. Golik ◽  
...  
Keyword(s):  

2021 ◽  
pp. 014459872110093
Author(s):  
Wei Zhang ◽  
Jiawei Guo ◽  
Kaidi Xie ◽  
Jinming Wang ◽  
Liang Chen ◽  
...  

In order to mine the coal seam under super-thick hard roof, improve the utilization rate of resources and prolong the remaining service life of the mine, a case study of the Gaozhuang Coal Mine in the Zaozhuang Mining Area has been performed in this paper. Based on the specific mining geological conditions of ultra-close coal seams (#3up and #3low coal seams), their joint systematic analysis has been performed, with the focus made in the following three aspects: (i) prevention of rock burst under super-thick hard roof, (ii) deformation control of surrounding rock of roadways in the lower coal seam, and (iii) fire prevention in the goaf of working face. Given the strong bursting tendency observed in upper coal seam and lower coal seam, the technology of preventing rock burst under super-thick hard roof was proposed, which involved setting of narrow section coal pillars to protect roadways and interleaving layout of working faces. The specific supporting scheme of surrounding rock of roadways in the #3low1101 working face was determined, and the grouting reinforcement method of local fractured zones through Marithan was further proposed, to ensure the deformation control of surrounding rock of roadways in lower coal seams. The proposed fire prevention technology envisaged goaf grouting and spraying to plug leaks, which reduced the hazard of spontaneous combustion of residual coals in mined ultra-close coal seams. The technical and economic improvements with a direct economic benefit of 5.55 million yuan were achieved by the application of the proposed comprehensive technical support. The research results obtained provide a theoretical guidance and technical support of safe mining strategies of close coal seams in other mining areas.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wenyu Lv ◽  
Kai Guo ◽  
Jianhao Yu ◽  
Xufeng Du ◽  
Kun Feng

The movement of the overlying strata in steeply dipping coal seams is complex, and the deformation of roof rock beam is obvious. In general, the backfill mining method can improve the stability of the surrounding rock effectively. In this study, the 645 working face of the tested mine is used as a prototype to establish the mechanical model of the inclined roof beam using the sloping flexible shield support backfilling method in a steeply dipping coal seam, and the deflection equation is derived to obtain the roof damage structure and the maximum deflection position of the roof beam. Finally, numerical simulation and physical similarity simulation experiments are carried out to study the stability of the surrounding rock structure under backfilling mining in steeply dipping coal seams. The results show the following: (1) With the support of the gangue filling body, the inclined roof beam has smaller roof subsidence, and the maximum deflection position moves to the upper part of working face. (2) With the increase of the stope height, the stress and displacement field of the surrounding rock using the backfilling method show an asymmetrical distribution, the movement, deformation, and failure increase slowly, and the increase of the strain is relatively stable. Compared with the caving method, the range and degree of the surrounding rock disturbed by the mining stress are lower. The results of numerical simulation and physical similarity simulation experiment are generally consistent with the theoretically derived results. Overall, this study can provide theoretical basis for the safe and efficient production of steeply dipping coal seams.


Author(s):  
V.S. Zaburdayev ◽  
◽  
S.N. Podobrazhin ◽  

Conditions are given concerning the development of methane-bearing coal seams in Russia, the chronology of injuries from explosions and outbreaks of methane-air mixtures at the Russian mines for a quarter of a century of developing coal seams at the nine deposits. The emergency was studied in 174 mine incidents, which occurred mainly at the mines of Kuzbass, Vorkuta coal deposit, Eastern Donbass, Chelyabinsk basin, Primorye and Sakhalin. Emergency objects - excavation areas, preparation faces and mined-out areas of the mines. The sources of ignition of methane-air mixture are drilling and blasting works in the faces, malfunctioning of electrical equipment, frictional sparking, endogenous fires, and smoking in the mines. The most injury-risk for methane are steep and steeply inclined mines. The need in the scientific substantiation of the decisions taken for prevention or reduction of the methane injury-risk at the mines is noted in the article. An important role is assigned to the choice of ways to achieve this goal considering the geological and mining conditions of the development of gas-bearing coal seams. As an example, the conditions, methods, and parameters of mining operations at the excavation areas of four mines are given, where occurred the catastrophic explosions of methane-air and methane-dust-air mixtures. The reasons are gross violations of safety rules during mining operations, incompetence of the mine engineering personnel, design, and control organizations in matters of safety during the underground work at the gas-hazardous mines with an extensive network of workings. This resulted in the death of miners and mine rescuers, the destruction of mine workings, equipment and devices, underground fires. Recommendations are given for reducing the level of methane injury-risk at the methane-rich mines.


2021 ◽  
Author(s):  
Vibhas J. Pandey ◽  
Sameer Ganpule ◽  
Steven Dewar

Abstract The Walloons coal measures located in Surat Basin (eastern Australia) is a well-known coal seam gas play that has been under production for several years. The well completion in this play is primarily driven by coal permeability which varies from 1 Darcy or more in regions with significant natural fractures to less than 1md in areas with underdeveloped cleat networks. For an economic development of the latter, fracturing treatment designs that effectively stimulate numerous and often thin coals seams, and enhance inter-seam connectivity, are a clear choice. Fracture stimulation of Surat basin coals however has its own challenges given their unique geologic and geomechanical features that include (a) low net to gross ratio of ~0.1 in nearly 300 m (984.3 ft) of gross interval, (b) on average 60 seams per well ranging from 0.4 m to 3 m in thickness, (c) non-gas bearing and reactive interburden, and (d) stress regimes that vary as a function of depth. To address these challenges, low rate, low viscosity, and high proppant concentration coiled tubing (CT) conveyed pinpoint stimulation methods were introduced basin-wide after successful technology pilots in 2015 (Pandey and Flottmann 2015). This novel stimulation technique led to noticeable improvements in the well performance, but also highlighted the areas that could be improved – especially stage spacing and standoff, perforation strategy, and number of stages, all aimed at maximizing coal coverage during well stimulation. This paper summarizes the findings from a 6-well multi-stage stimulation pilot aimed at studying fracture geometries to improve standoff efficiency and maximizing coal connectivity amongst various coal seams of Walloons coal package. In the design matrix that targeted shallow (300 to 600 m) gas-bearing coal seams, the stimulation treatments varied in volume, injection rate, proppant concentration, fluid type, perforation spacing, and standoff between adjacent stages. Treatment designs were simulated using a field-data calibrated, log-based stress model. After necessary adjustments in the field, the treatments were pumped down the CT at injection rates ranging from 12 to 16 bbl/min (0.032 to 0.042 m3/s). Post-stimulation modeling and history-matching using numerical simulators showed the dependence of fracture growth not only on pumping parameters, but also on depth. Shallower stages showed a strong propensity of limited growth which was corroborated by additional field measurements and previous work in the field (Kirk-Burnnand et al. 2015). These and other such observations led to revision of early guidelines on standoff and was considered a major step that now enabled a cost-effective inclusion of additional coal seams in the stimulation program. The learnings from the pilot study were implemented on development wells and can potentially also serve as a template for similar pinpoint completions worldwide.


2019 ◽  
Vol 134 ◽  
pp. 01018
Author(s):  
Alexei Selyukov ◽  
Nuray Demirel

Coal-bearing zones of open pit fields are represented by formations of coal seams from inclined to steep bedding with unstable thickness, both in dip and strike with different dip angles even within the same strata, with varying rock inter-layers and strength. In addition, most coal seams have a complex structure, including rock layers inside. In most cases, there is an uneven distribution of coal seams, and, consequently, coal reserves over the area of quarry fields. In this regard, for the analysis of quarry fields, there is a need to select criteria for assessing the complexity of coal-bearing zones for the purpose of systematizing them and choosing directions for constructing technological schemes for excavation and loading operations and mining methods.


1981 ◽  
Vol 21 (1) ◽  
pp. 137
Author(s):  
B. Wilkinson ◽  
L. Barro

Vast reserves of gas-bearing coal deposits are located in Queensland. Owing to the extremely low permeability and porosity of the coal, very low gas flow rates are normally encountered. In an effort to enhance the gas production to economic quantities and to degasify the coal to provide a safer mining environment, four experimental wells were drilled into coal seams near Blackwater, Queensland.Based on extensive laboratory testing of coal samples, computerised fracture design calculations were performed to determine a suitable stimulation programme. The wells were hydraulically fractured with up to 15 000 US gal of foamed stimulation fluid containing 75 per cent nitrogen. To prop open the induced fracture system, 15 000 lb of sand was pumped with the foam. The maximum concentration was eight pounds of 20-40 mesh sand per gallon of fluid. Gas production from the unstimulated wells was too low to measure. Early production data soon after the fracturing suggested a gas flow rate of approximately 50 Mcf/D.


Sign in / Sign up

Export Citation Format

Share Document