duplex stability
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 11)

H-INDEX

34
(FIVE YEARS 2)

2021 ◽  
Author(s):  
David Bartee ◽  
Kellie D Nance ◽  
Jordan L Meier

N4-acetylcytidine (ac4C) is a post-transcriptional modification of RNA that is conserved across all domains of life. All characterized sites of ac4C in eukaryotic RNA occur in the central nucleotide of a CCG consensus sequence. However, the thermodynamic consequences of cytidine acetylation in this context have never been assessed due to its challenging synthesis. Here we report the synthesis and biophysical characterization of ac4C in its endogenous eukaryotic sequence context. First, we develop a synthetic route to homogenous RNAs containing electrophilic acetyl groups. Next, we use thermal denaturation to interrogate the effects of ac4C on duplex stability and mismatch discrimination in a native sequence found in human ribosomal RNA. Finally, we demonstrate the ability of this chemistry to incorporate ac4C into the complex modification landscape of human tRNA, and use duplex melting combined with sequence analysis to highlight a potentially unique enforcing role for ac4C in this setting. By enabling the analysis of nucleic acid acetylation in its physiological sequence context, these studies establish a chemical foundation for understanding the function of a universally-conserved nucleobase in biology and disease.


2021 ◽  
Author(s):  
Saehyun Choi ◽  
Philip C. Bevilacqua ◽  
Christine D. Keating

Liquid-liquid phase separation has emerged as an important means of intracellular RNA compartmentalization. Some membraneless organelles host two or more compartments serving different putative biochemical roles; the mechanisms for, and functional consequences of, this subcompartmentalization are not yet well understood. Here, we show that adjacent phases of decapeptide-based multiphase model membraneless organelles differ markedly in their interactions with RNA. Additionally, their coexistence introduces new equilibria that alter RNA duplex stability and RNA sorting by hybridization state. These effects require neither biospecific RNA binding sites nor full-length proteins. As such, they are general and point to more primitive versions of mechanisms operating in extant biology that could aid understanding and enable design of functional artificial membraneless organelles.


2020 ◽  
Vol 22 (1) ◽  
pp. 182
Author(s):  
Darya S. Novopashina ◽  
Mariya A. Vorobyeva ◽  
Alexander A. Lomzov ◽  
Vladimir N. Silnikov ◽  
Alya G. Venyaminova

Oligonucleotide conjugates with boron clusters have found applications in different fields of molecular biology, biotechnology, and biomedicine as potential agents for boron neutron capture therapy, siRNA components, and antisense agents. Particularly, the closo-dodecaborate anion represents a high-boron-containing residue with remarkable chemical stability and low toxicity, and is suitable for the engineering of different constructs for biomedicine and molecular biology. In the present work, we synthesized novel oligonucleotide conjugates of closo-dodecaborate attached to the 5′-, 3′-, or both terminal positions of DNA, RNA, 2′-O-Me RNA, and 2′-F-Py RNA oligomers. For their synthesis, we employed click reaction with the azido derivative of closo-dodecaborate. The key physicochemical characteristics of the conjugates have been investigated using high-performance liquid chromatography, gel electrophoresis, UV thermal melting, and circular dichroism spectroscopy. Incorporation of closo-dodecaborate residues at the 3′-end of all oligomers stabilized their complementary complexes, whereas analogous 5′-modification decreased duplex stability. Two boron clusters attached to the opposite ends of the oligomer only slightly influence the stability of complementary complexes of RNA oligonucleotide and its 2′-O-methyl and 2′-fluoro analogs. On the contrary, the same modification of DNA oligonucleotides significantly destabilized the DNA/DNA duplex but gave a strong stabilization of the duplex with an RNA target. According to circular dichroism spectroscopy results, two terminal closo-dodecaborate residues cause a prominent structural rearrangement of complementary complexes with a substantial shift from the B-form to the A-form of the double helix. The revealed changes of key characteristics of oligonucleotides caused by incorporation of terminal boron clusters, such as the increase of hydrophobicity, change of duplex stability, and prominent structural changes for DNA conjugates, should be taken into account for the development of antisense oligonucleotides, siRNAs, or aptamers bearing boron clusters. These features may also be used for engineering of developing NA constructs with pre-defined properties.


Author(s):  
Darya Novopashina ◽  
Mariya A. Vorobyeva ◽  
Alexander A. Lomzov ◽  
Vladimir N. Silnikov ◽  
Alya G. Venyaminova

Oligonucleotide conjugates with boron clusters have found applications in different fields of molecular biology, biotechnology, and biomedicine as potential agents for boron neutron capture therapy, siRNA components, and antisense agents. Particularly, closo-dodecaborate anion represents a high-boron containing residue with remarkable chemical stability and low toxicity, suitable for the engineering of different constructs for biomedicine and molecular biology. In the present work, we synthesized novel oligonucleotide conjugates of closo-dodecaborate attached to the 5'-, 3'-, or both terminal positions of DNA, RNA, 2'-O-Me RNA, and 2'-F-Py RNA oligomers. For their synthesis, we employed click reaction with the azido derivative of closo-dodecaborate. The key physicochemical characteristics of the conjugates have been investigated using high-performance liquid chromatography, gel electrophoresis, UV thermal melting, and circular dichroism spectroscopy. Incorporation of closo-dodecaborate residues at the 3'-end of all oligomers stabilized their complementary complexes, while analogous 5'-modification decreased duplex stability. Two boron clusters attached to the opposite ends of the oligomer only slightly influence the stability of complementary complexes of RNA oligonucleotide and its 2'-O-methyl and 2'-fluoro analogs. On the contrary, the same modification of DNA oligonucleotides significantly destabilized DNA/DNA duplex but gave a strong stabilization of the duplex with RNA target. According to CD spectroscopy results, two terminal closo-dodecaborate residues cause a prominent structural rearrangement of complementary complexes with a substantial shift from B-form to the A-form of the double helix. The revealed changes of key characteristics of oligonucleotides caused by incorporation of terminal boron clusters, such as the increase of hydrophobicity, change of duplex stability, and prominent structural changes for DNA conjugates, should be taken into account for the development of antisense oligonucleotides, siRNAs, or aptamers bearing boron clusters. These features may also be used for engineering of developing NA constructs with pre-defined properties.


2020 ◽  
Vol 48 (18) ◽  
pp. 10087-10100
Author(s):  
Song Mao ◽  
Bartosz Sekula ◽  
Milosz Ruszkowski ◽  
Srivathsan V Ranganathan ◽  
Phensinee Haruehanroengra ◽  
...  

Abstract The N4-methylation of cytidine (m4C and m42C) in RNA plays important roles in both bacterial and eukaryotic cells. In this work, we synthesized a series of m4C and m42C modified RNA oligonucleotides, conducted their base pairing and bioactivity studies, and solved three new crystal structures of the RNA duplexes containing these two modifications. Our thermostability and X-ray crystallography studies, together with the molecular dynamic simulation studies, demonstrated that m4C retains a regular C:G base pairing pattern in RNA duplex and has a relatively small effect on its base pairing stability and specificity. By contrast, the m42C modification disrupts the C:G pair and significantly decreases the duplex stability through a conformational shift of native Watson-Crick pair to a wobble-like pattern with the formation of two hydrogen bonds. This double-methylated m42C also results in the loss of base pairing discrimination between C:G and other mismatched pairs like C:A, C:T and C:C. The biochemical investigation of these two modified residues in the reverse transcription model shows that both mono- or di-methylated cytosine bases could specify the C:T pair and induce the G to T mutation using HIV-1 RT. In the presence of other reverse transcriptases with higher fidelity like AMV-RT, the methylation could either retain the normal nucleotide incorporation or completely inhibit the DNA synthesis. These results indicate the methylation at N4-position of cytidine is a molecular mechanism to fine tune base pairing specificity and affect the coding efficiency and fidelity during gene replication.


2020 ◽  
Vol 48 (21) ◽  
pp. 12042-12054 ◽  
Author(s):  
Dipanwita Banerjee ◽  
Hisae Tateishi-Karimata ◽  
Tatsuya Ohyama ◽  
Saptarshi Ghosh ◽  
Tamaki Endoh ◽  
...  

Abstract The stability of Watson–Crick paired RNA/DNA hybrids is important for designing optimal oligonucleotides for ASO (Antisense Oligonucleotide) and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas9 techniques. Previous nearest-neighbour (NN) parameters for predicting hybrid stability in a 1 M NaCl solution, however, may not be applicable for predicting stability at salt concentrations closer to physiological condition (e.g. ∼100 mM Na+ or K+ in the presence or absence of Mg2+). Herein, we report measured thermodynamic parameters of 38 RNA/DNA hybrids at 100 mM NaCl and derive new NN parameters to predict duplex stability. Predicted ΔG°37 and Tm values based on the established NN parameters agreed well with the measured values with 2.9% and 1.1°C deviations, respectively. The new results can also be used to make precise predictions for duplexes formed in 100 mM KCl or 100 mM NaCl in the presence of 1 mM Mg2+, which can mimic an intracellular and extracellular salt condition, respectively. Comparisons of the predicted thermodynamic parameters with published data using ASO and CRISPR–Cas9 may allow designing shorter oligonucleotides for these techniques that will diminish the probability of non-specific binding and also improve the efficiency of target gene regulation.


2020 ◽  
Vol 117 (25) ◽  
pp. 14194-14201 ◽  
Author(s):  
Saptarshi Ghosh ◽  
Shuntaro Takahashi ◽  
Tatsuya Ohyama ◽  
Tamaki Endoh ◽  
Hisae Tateishi-Karimata ◽  
...  

The intracellular environment is crowded and heterogeneous. Although the thermodynamic stability of nucleic acid duplexes is predictable in dilute solutions, methods of predicting such stability under specific intracellular conditions are not yet available. We recently showed that the nearest-neighbor model for self-complementary DNA is valid under molecular crowding condition of 40% polyethylene glycol with an average molecular weight of 200 (PEG 200) in 100 mM NaCl. Here, we determined nearest-neighbor parameters for DNA duplex formation under the same crowding condition to predict the thermodynamics of DNA duplexes in the intracellular environment. Preferential hydration of the nucleotides was found to be the key factor for nearest-neighbor parameters in the crowding condition. The determined parameters were shown to predict the thermodynamic parameters (∆H°, ∆S°, and ∆G°37) and melting temperatures (Tm) of the DNA duplexes in the crowding condition with significant accuracy. Moreover, we proposed a general method for predicting the stability of short DNA duplexes in different cosolutes based on the relationship between duplex stability and the water activity of the cosolute solution. The method described herein would be valuable for investigating biological processes that occur under specific intracellular crowded conditions and for the application of DNA-based biotechnologies in crowded environments.


ACS Omega ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 5107-5116
Author(s):  
Heli Fan ◽  
Huabing Sun ◽  
Mohammad Mojibul Haque ◽  
Xiaohua Peng
Keyword(s):  

2019 ◽  
Vol 29 (5) ◽  
pp. 740-743 ◽  
Author(s):  
Kasper Beck ◽  
Charlotte Reslow-Jacobsen ◽  
Mick Hornum ◽  
Christian Henriksen ◽  
Poul Nielsen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document