scholarly journals Electron acceleration and radio emission following the early interaction of two coronal mass ejections

2020 ◽  
Vol 642 ◽  
pp. A151
Author(s):  
D. E. Morosan ◽  
E. Palmerio ◽  
J. E. Räsänen ◽  
E. K. J. Kilpua ◽  
J. Magdalenić ◽  
...  

Context. Coronal mass ejections (CMEs) are large eruptions of magnetised plasma from the Sun that are often accompanied by solar radio bursts produced by accelerated electrons. Aims. A powerful source for accelerating electron beams are CME-driven shocks, however, there are other mechanisms capable of accelerating electrons during a CME eruption. So far, studies have relied on the traditional classification of solar radio bursts into five groups (Type I–V) based mainly on their shapes and characteristics in dynamic spectra. Here, we aim to determine the origin of moving radio bursts associated with a CME that do not fit into the present classification of the solar radio emission. Methods. By using radio imaging from the Nançay Radioheliograph, combined with observations from the Solar Dynamics Observatory, Solar and Heliospheric Observatory, and Solar Terrestrial Relations Observatory spacecraft, we investigate the moving radio bursts accompanying two subsequent CMEs on 22 May 2013. We use three-dimensional reconstructions of the two associated CME eruptions to show the possible origin of the observed radio emission. Results. We identified three moving radio bursts at unusually high altitudes in the corona that are located at the northern CME flank and move outwards synchronously with the CME. The radio bursts correspond to fine-structured emission in dynamic spectra with durations of ∼1 s, and they may show forward or reverse frequency drifts. Since the CME expands closely following an earlier CME, a low coronal CME–CME interaction is likely responsible for the observed radio emission. Conclusions. For the first time, we report the existence of new types of short duration bursts, which are signatures of electron beams accelerated at the CME flank. Two subsequent CMEs originating from the same region and propagating in similar directions provide a complex configuration of the ambient magnetic field and favourable conditions for the creation of collapsing magnetic traps. These traps are formed if a CME-driven wave, such as a shock wave, is likely to intersect surrounding magnetic field lines twice. Electrons will thus be further accelerated at the mirror points created at these intersections and eventually escape to produce bursts of plasma emission with forward and reverse drifts.

2020 ◽  
Author(s):  
Immanuel Christopher Jebaraj ◽  
Jasmina Magdalenic ◽  
Stefaan Poedts

<p>Solar radio emission is studied for many decades and a large number of studies have been dedicated to metric radio emission originating from the low corona. It is generally accepted that solar radio emission  observed at wavelengths below the metric range is produced by the coherent plasma emission mechanism. Fine structures seem to be an intrinsic part of solar radio emission and they are very important for understanding plasma processes in the solar medium. Extensive reporting and number of studies of the metric range fine structures were performed, but studies of fine structures in the interplanetary domain are quite rare. New and advanced ground-based radio imaging spectroscopic techniques (e.g. LOFAR, MWA, etc.,) and space-based observations (Wind/WAVES, STEREO/WAVES A & B, PSP, and SolO in the future) provide a unique opportunity to study radio fine structures observed  all the way from metric to kilometric range.</p><p>Radio signatures of solar eruptive events, such as flares and CMEs, observed in the interplanetary space are mostly confined to type II (radio signatures of magneto-hydrodynamic shock waves), and type III  bursts(electron beams propagating along open and quasi-open magnetic field lines). In this study, we have identified, and analyzed three types of fine structures present within the interplanetary radio bursts. Namely, the striae-like fine structures within type III bursts, continuum-like emission patches, and very slow drifting narrowband structures within type II radio bursts. Since space-based radio observations are limited to dynamic spectra, we use the novel radio triangulation technique employing direction finding measurements from stereoscopic spacecraft (Wind/WAVES, STEREO/WAVES A & B) to obtain the 3D position of the radio emission. The novelty of the technique is that it is not dependent on a density model and in turn can probe the plasma density in the triangulated radio source positions (Magdalenic et al. 2014). Results of the study show that locating the radio source helps not only to understand the generation mechanism of the fine structures but also the ambient plasma conditions such as e.g. electron density. We found that fine structures are associated with complex CME/shock wave structures which interact with the ambient magnetic field structures. We also discuss the possible relationship between the fine structures, the broadband emission they are part of, and the solar eruptive events they are associated with.</p>


2020 ◽  
Author(s):  
Eoin Carley

<p>Solar flares are often associated with high-intensity radio emission known as `solar radio bursts' (SRBs). SRBs are generally observed in dynamic spectra and have five major spectral classes, labelled type I to type V depending on their shape and extent in frequency and time. Due to their morphological complexity, a challenge in solar radio physics is the automatic detection and classification of such radio bursts. Classification of SRBs has become necessary in recent years due to large data rates (3 Gb/s) generated by advanced radio telescopes such as the Low Frequency Array (LOFAR). Here we test the ability of several supervised machine learning algorithms to automatically classify type II and type III solar radio bursts. We test the detection accuracy of support vector machines (SVM), random forest (RF), as well as an implementation of transfer learning of the Inception and YOLO convolutional neural networks (CNNs). The training data was assembled from type II and III bursts observed by the Radio Solar Telescope Network (RSTN) from 1996 to 2018, supplemented by type II and III radio burst simulations. The CNNs were the best performers, often exceeding >90% accuracy on the validation set, with YOLO having the ability to perform radio burst burst localisation in dynamic spectra. This shows that machine learning algorithms (in particular CNNs) are capable of SRB classification, and we conclude by discussing future plans for the implementation of a CNN in the LOFAR for Space Weather (LOFAR4SW) data-stream pipelines.</p>


1980 ◽  
Vol 86 ◽  
pp. 277-280
Author(s):  
L. M. Bakunin ◽  
A. K. Markeev ◽  
V. V. Fomichev ◽  
I. M. Chertok

The data on type V solar radio bursts obtained at IZMIRAN with the 45-90 MHz radiospectrograph are analyzed. A great variety and complexity in the dynamic spectra of these events is found. A number of categories of bursts with different emission characteristics of the leading and following edges are distinguished. A number of types of fine structure were found in the dynamic spectra of many bursts. Type V bursts, for which the radio emission at the fundamental and the second harmonic is clearly observed are analyzed.


2017 ◽  
Vol 13 (S335) ◽  
pp. 321-323
Author(s):  
Vladimir M. Fridman ◽  
Olga A. Sheiner

AbstractIn this report we present a possible scheme of short-term CME detection forecasting developed on the basis of statistical analysis of solar radio emission regularities prior to “isolated” solar Coronal Mass Ejections registered in 1998, 2003, 2009-2013.


2002 ◽  
Vol 199 ◽  
pp. 488-489
Author(s):  
D. L. Jones

The GMRT represents a dramatic improvement in ground-based observing capabilities for low frequency radio astronomy. At sufficiently low frequencies, however, no ground-based facility will be able to produce high resolution images while looking through the ionosphere. A space-based array will be needed to explore the objects and processes which dominate the sky at the lowest radio frequencies. An imaging radio interferometer based on a large number of small, inexpensive satellites would be able to track solar radio bursts associated with coronal mass ejections out to the distance of Earth, determine the frequency and duration of early epochs of nonthermal activity in galaxies, and provide unique information about the interstellar medium.


1961 ◽  
Vol 133 ◽  
pp. 243 ◽  
Author(s):  
C. W. Young ◽  
C. L. Spencer ◽  
G. E. Moreton ◽  
J. A. Roberts

1981 ◽  
Vol 4 (2) ◽  
pp. 139-144 ◽  
Author(s):  
D. B. Melrose

The theory of solar radio bursts remains a mystery to most astronomers and astrophysicists. The reasons for this are not hard to identify. First, the solar radioastronomical data are unfamiliar. (The observational data on solar radio bursts is being reviewed separately at this meeting (McLean 1981).) The important features of this data involve frequency-time structures in dynamic spectra, and such features are absent in data on galactic and extra galactic objects. Even for pulsars the data are obtained at discrete frequencies, and the frequency-time structures are not of major importance. Second, the theory itself involves plasma physical concepts which are unfamiliar to most physicists and astronomers. These concepts include those of plasma instabilities, microturbulence, and of particle-wave and wave-wave interactions. Third, one must also admit that there is a prejudice amongst many astronomers against solar physics: the Sun is regarded as interesting only to the extent that it can teach us about other astronomical objects. I shall return to this third point later.


Sign in / Sign up

Export Citation Format

Share Document