Un-running vessel at the shallow-water road anchorage is under exposure to waves that come at arbitrary angle from the high sea. 3D waves from deep-sea area become practically 2D when entering shallow water. While mean periods are kept, waves become shorter and their crests become higher and sharpener than for deep-water ones. As a result of diffraction of waves that come from the deep-water sea at the vessel, a transformation zone appears where waves become 3D again. Dimensions of the waves’ transformation zone, character and height of waves in this zone specify safety of auxiliary crafts, e.g. tugboats, bunker vessels, pilot and road crafts, oil garbage collectors and boom crafts. In the complex 3D waves the trajectory of auxiliary vessel’s movement has to be safe, vessel’s motions have to be moderate. Besides waves’ height is one of the parameters that are used for forecast of movement of spilled oil. Last years the biggest part examination of waves’ problems was devoted to estimation of waves’ impact onto stationary or floating shelf facilities. For validity estimation, waves’ characteristics defined due to different theories, are compared with experimental ones. But characteristics of the waves around shelf facilities are hardly able to be compared to same ones of waves around bodies with vessel-type shape. At the experiments with vessels’ models, waves’ impact onto vessel was examined, but not the transformation of the waves themselves. So, comparing of waves area’s characteristics defined by both theoretical experimental ways is an actual problem. Aim of the paper is verification of results of wave area investigation; wave area is located around a vessel that is exposed of arbitrary angle waves at shallow water conditions. Description of experimental investigations of transformed waves in the towing tank is done; transformation zone appears around vessel’s model while running waves diffract on it. Distribution of waves’ amplitudes at the designated points was fixed by the special designed and manufactured unit. Experimental data is compared with computation results both of linear and non-linear theories. It was assumed that experimental results and theoretical data satisfactory meet each other; also that non-linear computations define the maximal values of waves’ amplitudes at all cases.