murine igg1
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 3)

H-INDEX

16
(FIVE YEARS 1)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1904
Author(s):  
Frank Maigler ◽  
Simone Ladel ◽  
Johannes Flamm ◽  
Stella Gänger ◽  
Barbara Kurpiers ◽  
...  

Intranasal drug delivery is a promising approach for the delivery of drugs to the CNS, but too heterogenous, unprecise delivery methods without standardization decrease the quality of many studies in rodents. Thus, the lack of a precise and region-specific application technique for mice is a major drawback. In this study, a previously developed catheter-based refined technique was validated against the conventional pipette-based method and used to specifically reach the olfactory or the respiratory nasal regions. This study successfully demonstrated region-specific administration at the olfactory mucosa resulting in over 20% of the administered fluorescein dose in the olfactory bulbs, and no peripheral bioactivity of insulin detemir and Fc-dependent uptake of two murine IgG1 (11C7 and P3X) along the olfactory pathway to cortex and hippocampus. An scFv of 11C7 showed hardly any uptake to the CNS. Elimination was dependent on the presence of the IgG’s antigen. In summary, it was successfully demonstrated that region-specific intranasal administration via the olfactory region resulted in improved brain targeting and reduced peripheral targeting in mice. The data are discussed with regard to their clinical potential.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Rinie Bajracharya ◽  
David Brici ◽  
Liviu-Gabriel Bodea ◽  
Phillip W. Janowicz ◽  
Jürgen Götz ◽  
...  

AbstractOne of the main pathological hallmarks of Alzheimer’s disease (AD) is the intraneuronal accumulation of hyperphosphorylated tau. Passive immunotherapy is a promising strategy for the treatment of AD and there are currently a number of tau-specific monoclonal antibodies in clinical trials. A proposed mechanism of action is to engage and clear extracellular, pathogenic forms of tau. This process has been shown in vitro to be facilitated by microglial phagocytosis through interactions between the antibody-tau complex and microglial Fc-receptors. As this interaction is mediated by the conformation of the antibody's Fc domain, this suggests that the antibody isotype may affect the microglial phagocytosis and clearance of tau, and hence, the overall efficacy of tau antibodies. We therefore aimed to directly compare the efficacy of the tau-specific antibody, RN2N, cloned into a murine IgG1/κ framework, which has low affinity Fc-receptor binding, to that cloned into a murine IgG2a/κ framework, which has high affinity Fc-receptor binding. Our results demonstrate, for RN2N, that although enhanced microglial activation via the IgG2a/κ isotype increased extracellular tau phagocytosis in vitro, the IgG1/κ isoform demonstrated enhanced ability to reduce tau pathology and microgliosis following passive immunisation of the P301L tau transgenic pR5 mouse model.


2019 ◽  
Vol 216 (10) ◽  
pp. 2282-2301 ◽  
Author(s):  
James T. Earnest ◽  
Katherine Basore ◽  
Vicky Roy ◽  
Adam L. Bailey ◽  
David Wang ◽  
...  

Despite causing outbreaks of fever and arthritis in multiple countries, no countermeasures exist against Mayaro virus (MAYV), an emerging mosquito-transmitted alphavirus. We generated 18 neutralizing mAbs against MAYV, 11 of which had “elite” activity that inhibited infection with EC50 values of <10 ng/ml. Antibodies with the greatest inhibitory capacity in cell culture mapped to epitopes near the fusion peptide of E1 and in domain B of the E2 glycoproteins. Unexpectedly, many of the elite neutralizing mAbs failed to prevent MAYV infection and disease in vivo. Instead, the most protective mAbs bound viral antigen on the cell surface with high avidity and promoted specific Fc effector functions, including phagocytosis by neutrophils and monocytes. In subclass switching studies, murine IgG2a and humanized IgG1 mAb variants controlled infection better than murine IgG1 and humanized IgG1-N297Q variants. An optimally protective antibody response to MAYV and possibly other alphaviruses may require tandem virus neutralization by the Fab moiety and effector functions of the Fc region.


2018 ◽  
Vol 9 ◽  
Author(s):  
Gina-Maria Lilienthal ◽  
Johann Rahmöller ◽  
Janina Petry ◽  
Yannic C. Bartsch ◽  
Alexei Leliavski ◽  
...  

AMB Express ◽  
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Rochelle Aw ◽  
Paul F. McKay ◽  
Robin J. Shattock ◽  
Karen M. Polizzi

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xiao-Min Hu ◽  
Yan-Rui Xu ◽  
Ru Yan ◽  
Shu-Liang Sun ◽  
Hong-Liang Dong ◽  
...  

Soluble lactoferrin (LTF) is a versatile molecule that not only regulates the iron homeostasis, but also harbors direct microbicidal and immunomodulating abilities in mammalian body fluids. In contrast, little is known about the function of membrane-bound LTF (mbLTF), although its expression on human polymorphonuclear leukocytes (huPMNs) has been reported for decades. Given that LTF/anti-LTF antibodies represent a potential diagnostic/prognostic biomarker and a therapeutic target in patients with immune disorders, we wished, in the present study, to generate a novel human LTF- (huLTF-) specific mAb suitable for detailed analyses on the expression and function of mbLTF as well as for deciphering the underlying mechanisms. By using the traditional hybridoma cell fusion technology, we obtained a murine IgG1 (kappa) mAb, M-860, against huLTF. M-860 recognizes a conformational epitope of huLTF as it binds to natural, but not denatured, huLTF in ELISA. Moreover, M-860 detects mbLTF by FACS and captures endogenous huLTF in total cell lysates of huPMNs. Functionally, M-860 induces the activation of huPMNs partially through TLR4 but independently of phagocytosis. M-860 is thus a powerful tool to analyze the expression and function of human mbLTF, which will further our understanding of the roles of LTF in health and disease.


Glycobiology ◽  
2011 ◽  
Vol 21 (8) ◽  
pp. 1097-1107 ◽  
Author(s):  
C. Welinder ◽  
B. Baldetorp ◽  
C. Borrebaeck ◽  
B.-M. Fredlund ◽  
B. Jansson

Blood ◽  
2010 ◽  
Vol 116 (13) ◽  
pp. 2241-2244 ◽  
Author(s):  
Jonathan S. Wall ◽  
Stephen J. Kennel ◽  
Alan C. Stuckey ◽  
Misty J. Long ◽  
David W. Townsend ◽  
...  

Abstract Care of patients with AL amyloidosis currently is limited by the lack of objective means to document disease extent, as well as therapeutic options that expedite removal of pathologic deposits. To address these issues, we have initiated a Phase I Exploratory IND study to determine the biodistribution of the fibril-reactive, amyloidolytic murine IgG1 mAb 11-1F4 labeled with I-124. Patients were infused with less than 1 mg (∼ 74 MBq) of GMP-grade antibody and imaged by PET/CT scan 48 and 120 hours later. Among 9 of 18 subjects, there was striking uptake of the reagent in liver, lymph nodes, bone marrow, intestine, or, unexpectedly, spleen (but not kidneys or heart). Generally, positive or negative results correlated with those obtained immunohistochemically using diagnostic tissue biopsy specimens. Based on these findings, we posit that 124I-mAb m11-1F4 can be used to identify AL candidates for passive immunotherapy using the chimeric form of the antibody. This trial was registered at www.clinicaltrials.gov as NCT00807872.


Sign in / Sign up

Export Citation Format

Share Document