transcription factor gene family
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 28)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Manoj Kumar Srivastava ◽  
Gyanesh Kumar Satpute

Duplication of genome is an important genetic innovation. Large genome size (1.1 Gb) along with ancient and recent duplication events make the soybean genome more complex. Analyzing the distribution and duplication event in soybean transcription family genes, the segmental duplication within chromosomes was revealed. Our study provides a strong evidence that the large segmental duplication event in genome architecture and evolution of soybean genome using simple method of sequence and order analysis of TF genes. Finally, a scheme for interrelationship of different chromosomes has been proposed.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiuming Zhang ◽  
Li Zhang ◽  
Miaomiao Ji ◽  
Yifei Wu ◽  
Songlin Zhang ◽  
...  

Abstract Background B-box (BBX) zinc-finger transcription factors play important roles in plant growth, development, and stress response. Although these proteins have been studied in model plants such as Arabidopsis thaliana or Oryza sativa, little is known about the evolutionary history or expression patterns of BBX proteins in grapevine (Vitis vinifera L.). Results We identified a total of 25 VviBBX genes in the grapevine genome and named them according to the homology with Arabidopsis. These proteins were classified into five groups on the basis of their phylogenetic relationships, number of B-box domains, and presence or absence of a CCT domain or VP motif. BBX proteins within the same group showed similar exon-intron structures and were unevenly distributed in grapevine chromosomes. Synteny analyses suggested that only segmental duplication events contributed to the expansion of the VviBBX gene family in grapevine. The observed syntenic relationships between some BBX genes from grapevine and Arabidopsis suggest that they evolved from a common ancestor. Transcriptional analyses showed that the grapevine BBX genes were regulated distinctly in response to powdery mildew infection and various phytohormones. Moreover, the expression levels of a subset of BBX genes in ovules were much higher in seedless grapevine cultivars compared with seeded cultivars during ovule development, implying a potential role in seed abortion. Additionally, VviBBX8, VquBBX15a and VquBBX29b were all located in the nucleus and had transcriptional activity except for VquBBX29b. Conclusions The results of this study establish the genome-wide analysis of the grapevine BBX family and provide a framework for understanding the biological roles of BBX genes in grapevine.


Author(s):  
Priya Kumari ◽  
Mrinalini Kakkar ◽  
Vijay Gahlaut ◽  
Vandana Jaiswal ◽  
Sanjay Kumar

The GAI‐RGA ‐ and ‐SCR (GRAS) proteins belong to the plant-specific transcription factor gene family and involved in several developmental processes, phytohormone and phytochrome signaling, symbiosis, stress responses etc. GRAS proteins have a conserved GRAS domain at C-terminal and hypervariable N-terminal. The C-terminal conserved domain directly affects the function of the GRAS proteins. For instance, in Arabidopsis, mutations in this domain in Slender rice 1 (SLR1) and Repressor of GA (RGA) proteins cause significant phenotypic changes. GRAS proteins have been reported in more than 30 plant species and till now it has been divided into 17 subfamilies. This review highlighted GRAS protein's importance during several biological processes in plants, structural features of GRAS proteins, their expansion and diversification in the plants, GRAS-interacting proteins complexes and their role in biological processes. We also summarized available recent research that utilized CRISPR-Cas9 technology to manipulate GRAS genes in a plant for different traits. Further, the exploitation of GRAS genes in crop improvement programs has also been discussed


Sign in / Sign up

Export Citation Format

Share Document