projection matrix
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 30)

H-INDEX

18
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7783
Author(s):  
Yanliang Duan ◽  
Xinhua Yu ◽  
Lirong Mei ◽  
Weiping Cao

Adaptive beamforming is sensitive to steering vector (SV) and covariance matrix mismatches, especially when the signal of interest (SOI) component exists in the training sequence. In this paper, we present a low-complexity robust adaptive beamforming (RAB) method based on an interference–noise covariance matrix (INCM) reconstruction and SOI SV estimation. First, the proposed method employs the minimum mean square error criterion to construct the blocking matrix. Then, the projection matrix is obtained by projecting the blocking matrix onto the signal subspace of the sample covariance matrix (SCM). The INCM is reconstructed by replacing part of the eigenvector columns of the SCM with the corresponding eigenvectors of the projection matrix. On the other hand, the SOI SV is estimated via the iterative mismatch approximation method. The proposed method only needs to know the priori-knowledge of the array geometry and angular region where the SOI is located. The simulation results showed that the proposed method can deal with multiple types of mismatches, while taking into account both low complexity and high robustness.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Chao He ◽  
Gang Ma

Mobile image retrieval greatly facilitates our lives and works by providing various retrieval services. The existing mobile image retrieval scheme is based on mobile cloud-edge computing architecture. That is, user equipment captures images and uploads the captured image data to the edge server. After preprocessing these captured image data and extracting features from these image data, the edge server uploads the extracted features to the cloud server. However, the feature extraction on the cloud server is noncooperative with the feature extraction on the edge server which cannot extract features effectively and has a lower image retrieval accuracy. For this, we propose a collaborative cloud-edge feature extraction architecture for mobile image retrieval. The cloud server generates the projection matrix from the image data set with a feature extraction algorithm, and the edge server extracts the feature from the uploaded image with the projection matrix. That is, the cloud server guides the edge server to perform feature extraction. This architecture can effectively extract the image data on the edge server, reduce network load, and save bandwidth. The experimental results indicate that this scheme can upload few features to get high retrieval accuracy and reduce the feature matching time by about 69.5% with similar retrieval accuracy.


Author(s):  
Daniel López-Sánchez ◽  
Cyril de Bodt ◽  
John A. Lee ◽  
Angélica González Arrieta ◽  
Juan M. Corchado

AbstractRandom Projection is one of the most popular and successful dimensionality reduction algorithms for large volumes of data. However, given its stochastic nature, different initializations of the projection matrix can lead to very different levels of performance. This paper presents a guided random search algorithm to mitigate this problem. The proposed method uses a small number of training data samples to iteratively adjust a projection matrix, improving its performance on similarly distributed data. Experimental results show that projection matrices generated with the proposed method result in a better preservation of distances between data samples. Conveniently, this is achieved while preserving the database-friendliness of the projection matrix, as it remains sparse and comprised exclusively of integers after being tuned with our algorithm. Moreover, running the proposed algorithm on a consumer-grade CPU requires only a few seconds.


2021 ◽  
Author(s):  
Marine Carrasco ◽  
Mohamed Doukali

Abstract This paper proposes a new overidentifying restrictions test in a linear model when the number of instruments (possibly weak) may be smaller or larger than the sample size n or even infinite in a heteroskedastic framework. The proposed J test combines two techniques: the Jackknife method and the regularization technique which consists in stabilizing the projection matrix. We theoretically show that our new test achieves the asymptotically correct size in the presence of many instruments. The simulation results demonstrate that our modified J statistic test has better empirical properties in small samples than existing J tests. We also propose a regularized F-test to assess the strength of the instruments, which is robust to heteroskedasticity and many instruments.


2021 ◽  
Vol 13 (2) ◽  
pp. 295
Author(s):  
Shaofei Dai ◽  
Wenbo Liu ◽  
Zhengyi Wang ◽  
Kaiyu Li

The high complexity of the reconstruction algorithm is the main bottleneck of the hyperspectral image (HSI) compression technology based on compressed sensing. Compressed sensing technology is an important tool for retrieving the maximum number of HSI scenes on the ground. However, the complexity of the compressed sensing algorithm is limited by the energy and hardware of spaceborne equipment. Aiming at the high complexity of compressed sensing reconstruction algorithm and low reconstruction accuracy, an equivalent model of the invertible transformation is theoretically derived by us in the paper, which can convert the complex invertible projection training model into the coupled dictionary training model. Besides, aiming at the invertible projection training model, the most competitive task-driven invertible projection matrix learning algorithm (TIPML) is proposed. In TIPML, we don’t need to directly train the complex invertible projection model, but indirectly train the invertible projection model through the training of the coupled dictionary. In order to improve the accuracy of reconstructed data, in the paper, the singular value transformation is proposed. It has been verified that the concentration of the dictionary is increased and that the expressive ability of the dictionary has not been reduced by the transformation. Besides, two-loop iterative training is established to improve the accuracy of data reconstruction. Experiments show that, compared with the traditional compressed sensing algorithm, the compressed sensing algorithm based on TIPML has higher reconstruction accuracy, and the reconstruction time is shortened by more than a hundred times. It is foreseeable that the TIPML algorithm will have a huge application prospect in the field of HSI compression.


Sign in / Sign up

Export Citation Format

Share Document