trna substrate
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 7)

H-INDEX

13
(FIVE YEARS 0)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rebecca Feyh ◽  
Nadine Bianca Waeber ◽  
Simone Prinz ◽  
Pietro Ivan Giammarinaro ◽  
Gert Bange ◽  
...  

Endonucleolytic removal of 5'-leader sequences from tRNA precursor transcripts (pre-tRNAs) by RNase P is essential for protein synthesis. Beyond RNA-based RNase P enzymes, protein-only versions of the enzyme exert this function in various Eukarya (there termed PRORPs) and in some bacteria (Aquifex aeolicus and close relatives); both enzyme types belong to distinct subgroups of the PIN domain metallonuclease superfamily. Homologs of Aquifex RNase P (HARPs) are also expressed in some other bacteria and many archaea, where they coexist with RNA-based RNase P and do not represent the main RNase P activity. Here we solved the structure of the bacterial HARP from Halorhodospira halophila by cryo-EM revealing a novel screw-like dodecameric assembly. Biochemical experiments demonstrate that oligomerization is required for RNase P activity of HARPs. We propose that the tRNA substrate binds to an extended spike-helix (SH) domain that protrudes from the screw-like assembly to position the 5'-end in close proximity to the active site of the neighboring dimer. The structure suggests that eukaryotic PRORPs and prokaryotic HARPs recognize the same structural elements of pre-tRNAs (tRNA elbow region and cleavage site). Our analysis thus delivers the structural and mechanistic basis for pre-tRNA processing by the prokaryotic HARP system.


2021 ◽  
Author(s):  
Rebecca Feyh ◽  
Nadine Bianca Waeber ◽  
Simone Prinz ◽  
Pietro Ivan Giammarinaro ◽  
Gert Bange ◽  
...  

Endonucleolytic removal of 5'-leader sequences from tRNA precursor transcripts (pre-tRNAs) by RNase P is essential for protein synthesis. Beyond RNA-based RNase P enzymes, protein-only versions of the enzyme exert this function in various Eukarya (there termed PRORPs) and in some bacteria (Aquifex aeolicus and close relatives); both enzyme types belong to distinct subgroups of the PIN domain metallonuclease superfamily. Homologs of Aquifex RNase P (HARPs) are also expressed in some other bacteria and many archaea, where they coexist with RNA-based RNase P and do not represent the main RNase P activity. Here we solved the structure of the bacterial HARP from Halorhodospira halophila by cryo-EM revealing a novel screw-like dodecameric assembly. Biochemical experiments demonstrate that oligomerization is required for RNase P activity of HARPs. We propose that the tRNA substrate binds to an extended spike-helix (SH) domain that protrudes from the screw-like assembly to position the 5'-end in close proximity to the active site of the neighboring dimer subunit. The structure suggests that eukaryotic PRORPs and prokaryotic HARPs recognize the same structural elements of pre-tRNAs (tRNA elbow region and cleavage site). Our analysis thus delivers the structural and mechanistic basis for pre-tRNA processing by the prokaryotic HARP system.


2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Charles W. Carter ◽  
Peter R. Wills

Codon-dependent translation underlies genetics and phylogenetic inferences, but its origins pose two challenges. Prevailing narratives cannot account for the fact that aminoacyl-tRNA synthetases (aaRSs), which translate the genetic code, must collectively enforce the rules used to assemble themselves. Nor can they explain how specific assignments arose from rudimentary differentiation between ancestral aaRSs and corresponding transfer RNAs (tRNAs). Experimental deconstruction of the two aaRS superfamilies created new experimental tools with which to analyze the emergence of the code. Amino acid and tRNA substrate recognition are linked to phase transfer free energies of amino acids and arise largely from aaRS class-specific differences in secondary structure. Sensitivity to protein folding rules endowed ancestral aaRS–tRNA pairs with the feedback necessary to rapidly compare alternative genetic codes and coding sequences. These and other experimental data suggest that the aaRS bidirectional genetic ancestry stabilized the differentiation and interdependence required to initiate and elaborate the genetic coding table. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


ACS Omega ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 4227-4235
Author(s):  
Alexey Rayevsky ◽  
Mohsen Sharifi ◽  
Eugeniy Demianenko ◽  
Dmitriy Volochnyuk ◽  
Michael Tukalo

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonah Beenstock ◽  
Samara Mishelle Ona ◽  
Jennifer Porat ◽  
Stephen Orlicky ◽  
Leo C. K. Wan ◽  
...  

AbstractThe KEOPS complex, which is conserved across archaea and eukaryotes, is composed of four core subunits; Pcc1, Kae1, Bud32 and Cgi121. KEOPS is crucial for the fitness of all organisms examined. In humans, pathogenic mutations in KEOPS genes lead to Galloway–Mowat syndrome, an autosomal-recessive disease causing childhood lethality. Kae1 catalyzes the universal and essential tRNA modification N6-threonylcarbamoyl adenosine, but the precise roles of all other KEOPS subunits remain an enigma. Here we show using structure-guided studies that Cgi121 recruits tRNA to KEOPS by binding to its 3’ CCA tail. A composite model of KEOPS bound to tRNA reveals that all KEOPS subunits form an extended tRNA-binding surface that we have validated in vitro and in vivo to mediate the interaction with the tRNA substrate and its modification. These findings provide a framework for understanding the inner workings of KEOPS and delineate why all KEOPS subunits are essential.


2020 ◽  
Author(s):  
Agnes Karasik ◽  
Carol A. Fierke ◽  
Markos Koutmos

ABSTRACTMitochondrial diseases linked to mutations in mitochondrial(mt) tRNA sequences are abundant. However, the contributions of these tRNA mutations to the development of diseases is mostly unknown. Mutations may affect interactions with (mt)tRNA maturation enzymes or protein synthesis machinery leading to mitochondrial dysfunction. In human mitochondria, the first step of tRNA processing is the removal of the 5’end of precursor tRNAs (pre-tRNA) catalyzed by the three-component enzyme, mtRNase P. Additionally, one sub-component of mtRNase P, mitochondrial RNase P protein 1 (MRPP1) catalyzes methylation of the R9 base in pre-tRNAs. Despite the central role of 5’ end processing in mitochondrial tRNA maturation, the link between mtRNase P and diseases is mostly unexplored. Here we investigate how 11 different human disease-linked mutations in (mt)pre-tRNAs affect the activities of mtRNase P. We find that several mutations weaken the pre-tRNA binding affinity, while the majority of mutations decrease 5’ end processing and methylation activity catalyzed by mtRNase P. Furthermore, all of the investigated mutations in (mt)pre-tRNALeu(UUR) alter the tRNA fold which contributes to the partial loss of function of mtRNase P. Overall, these results reveal an etiological link between early steps of (mt)tRNA-substrate processing and mitochondrial disease.


2015 ◽  
Vol 486 ◽  
pp. 86-95 ◽  
Author(s):  
Charles J. Richardson ◽  
Eric A. First

RNA Biology ◽  
2015 ◽  
Vol 12 (8) ◽  
pp. 900-911 ◽  
Author(s):  
Mi Zhou ◽  
Tao Long ◽  
Zhi-Peng Fang ◽  
Xiao-Long Zhou ◽  
Ru-Juan Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document