proteomics informed by transcriptomics
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 0)

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Ricardo Pérez-Sánchez ◽  
Angel Carnero-Morán ◽  
M. Luz Valero ◽  
Ana Oleaga

Abstract Background The argasid tick Ornithodoros erraticus is the main vector of tick-borne human relapsing fever (TBRF) and African swine fever (ASF) in the Mediterranean Basin. The prevention and control of these diseases would greatly benefit from the elimination of O. erraticus populations, and anti-tick vaccines are envisaged as an effective and sustainable alternative to chemical acaricide usage for tick control. Ornithodoros erraticus saliva contains bioactive proteins that play essential functions in tick feeding and host defence modulation, which may contribute to host infection by tick-borne pathogens. Hence, these proteins could be candidate antigen targets for the development of vaccines aimed at the control and prevention of O. erraticus infestations and the diseases this tick transmits. The objective of the present work was to obtain and characterise the proteome of the saliva of O. erraticus adult ticks as a means to identify and select novel salivary antigen targets. Methods A proteomics informed by transcriptomics (PIT) approach was applied to analyse samples of female and male saliva separately using the previously obtained O. erraticus sialotranscriptome as a reference database and two different mass spectrometry techniques, namely liquid chromatography–tandem mass spectrometry (LC–MS/MS) in data-dependent acquisition mode and sequential window acquisition of all theoretical fragment ion spectra MS (SWATH-MS). Results Up to 264 and 263 proteins were identified by LC–MS/MS in the saliva of O. erraticus female and male ticks, respectively, totalling 387 non-redundant proteins. Of these, 224 were further quantified by SWATH-MS in the saliva of both male and female ticks. Quantified proteins were classified into 23 functional categories and their abundance compared between sexes. Heme/iron-binding proteins, protease inhibitors, proteases, lipocalins and immune-related proteins were the categories most abundantly expressed in females, while glycolytic enzymes, protease inhibitors and lipocalins were the most abundantly expressed in males. Ninety-seven proteins were differentially expressed between the sexes, of which 37 and 60 were overexpressed in females and males, respectively. Conclusions The PIT approach demonstrated its usefulness for proteomics studies of O. erraticus, a non-model organism without genomic sequences available, allowing the publication of the first comprehensive proteome of the saliva of O. erraticus reported to date. These findings confirm important quantitative differences between sexes in the O. erraticus saliva proteome, unveil novel salivary proteins and functions at the tick–host feeding interface and improve our understanding of the physiology of feeding in O. erraticus ticks. The integration of O. erraticus sialoproteomic and sialotranscriptomic data will drive a more rational selection of salivary candidates as antigen targets for the development of vaccines aimed at the control of O. erraticus infestations and the diseases it transmits. Graphical Abstract


2021 ◽  
Author(s):  
Ricardo Pérez-Sánchez ◽  
Angel Carnero-Morán ◽  
M. Luz Valero ◽  
Ana Oleaga

Abstract Background: The argasid tick Ornithodoros erraticus is the main vector of tick-borne human relapsing fever (TBRF) and African swine fever (ASF) in the Mediterranean Basin. The prevention and control of these diseases would greatly benefit from the elimination of O. erraticus populations, and anti-tick vaccines are envisaged as an effective and sustainable alternative to chemical acaricide usage for tick control. O. erraticus saliva contains bioactive proteins that play essential functions for tick feeding and host defence modulation, which may contribute to host infection by tick-borne pathogens. Hence, these proteins could be candidate antigen targets for the development of vaccines aimed at the control and prevention of O. erraticus infestations and the diseases it transmits. The objective of the present work was to obtain and characterise the proteome of the saliva of O. erraticus adult ticks as a means to identify and select novel salivary antigen targets.Methods: We have applied a proteomics informed by transcriptomics (PIT) approach to analyse samples of female and male saliva separately using the previously obtained O. erraticus sialotranscriptome as a reference database, and two different mass spectrometry techniques, namely, LC-MS/MS in data-dependent acquisition mode and sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS). Results: Up to 264 and 263 proteins were identified by LC-MS/MS in the saliva of O. erraticus female and male ticks, respectively, totalling 387 non-redundant proteins. Of them, 224 were further quantified by SWATH-MS in both male and female saliva. Quantified proteins were classified into 23 functional categories and their abundance compared between sexes. Heme/iron binding proteins, protease inhibitors, proteases, lipocalins and immune-related proteins were the categories most abundantly expressed in females, while glycolytic enzymes, protease inhibitors and lipocalins were the most abundantly expressed in males. Ninety-seven proteins were differentially expressed between the sexes: 37 were overexpressed in females and 60 in males. Conclusions: The PIT approach demonstrated its usefulness for proteomics studies of O. erraticus, a non-model organism without genomic sequences available, allowing the publication of the first comprehensive proteome of the saliva of O. erraticus reported to date. These findings confirm important quantitative differences between sexes in the O. erraticus saliva proteome, unveil novel salivary proteins and functions at the tick–host feeding interface and help to understand the physiology of feeding in O. erraticus ticks. The integration of O. erraticus sialoproteomic and sialotranscriptomic data will drive a more rational selection of salivary candidates as antigen targets for the development of vaccines aimed at the control of O. erraticus infestations and the diseases it transmits.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ana Oleaga ◽  
Angel Carnero-Morán ◽  
M. Luz Valero ◽  
Ricardo Pérez-Sánchez

Abstract Background The argasid tick Ornithodoros moubata is the main vector in mainland Africa of African swine fever virus and the spirochete Borrelia duttoni, which causes human relapsing fever. The elimination of populations of O. moubata would contribute to the prevention and control of these two serious diseases. Anti-tick vaccines are an eco-friendly and sustainable means of eliminating tick populations. Tick saliva forms part of the tick-host interface, and knowledge of its composition is key to the identification and selection of vaccine candidate antigens. The aim of the present work is to increase the body of data on the composition of the saliva proteome of adult O. moubata ticks, particularly of females, since in-depth knowledge of the O. moubata sialome will allow the identification and selection of novel salivary antigens as targets for tick vaccines. Methods We analysed samples of female and male saliva using two different mass spectrometry (MS) approaches: data-dependent acquisition liquid chromatography-tandem MS (LC–MS/MS) and sequential window acquisition of all theoretical fragment ion spectra–MS (SWATH-MS). To maximise the number of proteins identified, a proteomics informed by transcriptomics analysis was applied using the O. moubata salivary transcriptomic dataset previously obtained by RNA-Seq. Results SWATH-MS proved to be superior to LC–MS/MS for the study of female saliva, since it identified 61.2% more proteins than the latter, the reproducibility of results was enhanced with its use, and it provided a quantitative picture of salivary components. In total, we identified 299 non-redundant proteins in the saliva of O. moubata, and quantified the expression of 165 of these in both male and female saliva, among which 13 were significantly overexpressed in females and 40 in males. These results indicate important quantitative differences in the saliva proteome between the sexes. Conclusions This work expands our knowledge of the O. moubata sialome, particularly that of females, by increasing the number of identified novel salivary proteins, which have different functions at the tick–host feeding interface. This new knowledge taken together with information on the O. moubata sialotranscriptome will allow a more rational selection of salivary candidates as antigen targets for tick vaccine development. Graphical Abstract


2021 ◽  
Author(s):  
Ana Oleaga ◽  
Angel Carnero-Moran ◽  
M. Luz Valero ◽  
Ricardo Pérez-Sánchez

Abstract Background The argasid tick Ornithodoros moubata is the main vector in mainland Africa of the African swine fever virus and the spirochete Borrelia duttoni, which causes human relapsing fever. Elimination of O. moubata populations would contribute to the prevention and control of these two severe diseases. The development of anti-tick vaccines is an eco-friendly and sustainable method for the elimination of tick populations. The tick saliva forms part of the tick-host interface and knowing its composition is key for the identification and selection of vaccine candidate antigens. The aim of the present work is to expand the data on the saliva proteome composition of O. moubata adult ticks, particularly of female ticks, since a more in-depth knowledge of the O. moubata sialome will allow identifying and selecting novel salivary antigens as targets for tick vaccines. Methods We have analysed samples of female and male saliva using two different mass spectrometry approaches: data-dependent acquisition LC-MS/MS and sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS). To maximise the number of protein identifications, a proteomics informed by transcriptomics (PIT) analysis was applied using the O. moubata salivary transcriptomic dataset previously obtained by RNAseq. Results The SWATH-MS proved to be superior to LC-MS/MS in the study of female saliva since it increased by 60% the number of identified proteins, enhanced the reproducibility of the results and provided a quantitative image of the saliva components. As a whole, we have identified 299 non-redundant proteins in the O. moubata saliva and quantified the expression of 165 of them in both male and female saliva, among which 13 were significantly overexpressed in females and 40 in males. These results evidence important quantitative differences between sexes in the saliva proteome. Conclusions This work expand our knowledge of the O. moubata sialome, particularly of female ticks, by increasing the identification of novel salivary proteins and functions at the tick–host feeding interface. The integration of this new knowledge together with the information from the O. moubata sialotranscriptome will allow a more rational selection of the salivary candidates as antigen targets for tick vaccine development.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5525 ◽  
Author(s):  
Wan Mohd Aizat ◽  
Sarah Ibrahim ◽  
Reyhaneh Rahnamaie-Tajadod ◽  
Kok-Keong Loke ◽  
Hoe-Han Goh ◽  
...  

Background Jasmonic acid (JA) and its derivative, methyl JA (MeJA) are hormonal cues released by plants that signal defense response to curb damages from biotic and abiotic stresses. To study such response, a tropical herbal plant, Persicaria minor, which possesses pungent smell and various bioactivities including antimicrobial and anticancer, was treated with MeJA. Such elicitation has been performed in hairy root cultures and plants such as Arabidopsis and rice, yet how MeJA influenced the proteome of an herbal species like P. minor is unknown. Method In this study, P. minor plants were exogenously elicited with MeJA and leaf samples were subjected to SWATH-MS proteomics analysis. A previously published translated transcriptome database was used as a reference proteome database for a comprehensive protein sequence catalogue and to compare their differential expression. Results From this proteomics informed by transcriptomics approach, we have successfully profiled 751 proteins of which 40 proteins were significantly different between control and MeJA-treated samples. Furthermore, a correlation analysis between both proteome and the transcriptome data sets suggests that significantly upregulated proteins were positively correlated with their cognate transcripts (Pearson’s r = 0.677) while a weak correlation was observed for downregulated proteins (r = 0.147). Discussion MeJA treatment induced the upregulation of proteins involved in various biochemical pathways including stress response mechanism, lipid metabolism, secondary metabolite production, DNA degradation and cell wall degradation. Conversely, proteins involved in energy expensive reactions such as photosynthesis, protein synthesis and structure were significantly downregulated upon MeJA elicitation. Overall protein-transcript correlation was also weak (r = 0.341) suggesting the existence of post-transcriptional regulation during such stress. In conclusion, proteomics analysis using SWATH-MS analysis supplemented by the transcriptome database allows comprehensive protein profiling of this non-model herbal species upon MeJA treatment.


2018 ◽  
Vol 46 (10) ◽  
pp. 4893-4902 ◽  
Author(s):  
Shyamasree Saha ◽  
David A Matthews ◽  
Conrad Bessant

BMC Genomics ◽  
2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Lawrence Mok ◽  
James W. Wynne ◽  
Mary Tachedjian ◽  
Brian Shiell ◽  
Kris Ford ◽  
...  

2016 ◽  
Vol 15 (10) ◽  
pp. 3938-3943 ◽  
Author(s):  
Toni Luge ◽  
Cornelius Fischer ◽  
Sascha Sauer

Sign in / Sign up

Export Citation Format

Share Document