transcriptome database
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 36)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Cuihua Xia ◽  
Rujia Dai ◽  
Jing Yu ◽  
Chunling Zhang ◽  
Ma-li Wong ◽  
...  

Abstract Alternative splicing (AS) contributes to the increased cellular and functional tissue complexity that is substantial in the brain. AS is tightly regulated because it is critical to many biological processes. Defective splicing is observed in several neurological and psychiatric disorders. While exonic mutations usually affect the splicing of an individual RNA, mutations in the splicing factors (components of spliceosome) frequently produce widespread disruption in the processing of many precursor-mRNAs. Thus, we tested the hypotheses that expression changes of spliceosome genes may be a common process and shared splicing pathways may be involved in complex polygenic brain disorders. We searched for expression changes of spliceosome-related genes (SGs) using a transcriptome database of several brain regions in 6 neurological and psychiatric disorders, namely Alzheimer’s disease, and autism spectrum, bipolar and major depressive disorder, Parkinson’s disease, and schizophrenia. Out of 255 SGs detected in brain, 138 showed excessive, significant changes in one or more of these disorders. Dysregulation of 10 SGs was shared in 4 disorders, and they were mostly downregulated. Six associated pathways were over-represented in all 6 disorders, including the major and the minor mRNA splicing pathways and RNA metabolism. Therefore, we found that aberrations in the mRNA splicing process may be a common trajectory to many complex brain disorders involving the spliceosome complex.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1598
Author(s):  
Wenju Lu ◽  
Enbo Wang ◽  
Weijuan Zhou ◽  
Yifan Li ◽  
Zhaoji Li ◽  
...  

Dacrydium pectinatum de Laubenfels is a perennial gymnosperm species dominant in tropical montane rain forests. Due to severe damages by excessive deforestation, typhoons, and other external forces, the population of the species has been significantly reduced. Furthermore, its natural regeneration is poor. To better understand the male cone development in D. pectinatum, we examined the morphological and anatomical changes, analyzed the endogenous hormone dynamics, and profiled gene expression. The morpho-histological observations suggest that the development of D. pectinatum male cone can be largely divided into four stages: microspore primordium formation (April to May), microspore sac and pollen mother cell formation (July to November), pollen mother cell division (January), and pollen grain formation (February). The levels of gibberellins (GA), auxin (IAA), abscisic Acid (ABA), cytokinin (CTK), and jasmonic acid (JA) fluctuated during the process of male cone development. The first transcriptome database for a Dacrydium species was generated, revealing >70,000 unigene sequences. Differential expression analyses revealed several floral and hormone biosynthesis and signal transduction genes that could be critical for male cone development. Our study provides new insights on the cone development in D. pectinatum and the foundation for male cone induction with hormones and studies of factors contributing to the species’ low rate of seed germination.


2021 ◽  
Author(s):  
Julian Wolf ◽  
Stefaniya Boneva ◽  
Anja Schlecht ◽  
Thabo Lapp ◽  
Claudia Auw-Haedrich ◽  
...  

The applications of deep sequencing technologies in life science research and clinical diagnostics have increased rapidly over the last decade. Although fast algorithms for data processing exist, intuitive, portable solutions for data analysis are still rare. For this purpose, we developed a web-based transcriptome data-base, which provides a platform-independent, intuitive solution to easily explore and compare ocular gene expression of 100 diseased and healthy human tissue samples from 15 different tissue types collected at the Eye Center of the Universi-ty of Freiburg. To ensure comparability of expression between different tissues, reads were normalized across all 100 samples. Differentially expressed genes were calculated between each tissue type to determine tissue-specific genes. Unsupervised analysis of all 100 samples revealed an accurate clustering ac-cording to different tissue types. Cluster analysis based on known cell type-specific marker genes allowed differentiation of respective tissues. Several tis-sue-specific marker genes were identified. These genes were involved in tissue- or disease-specific processes, such as myelination for the optic nerve, visual perception for retina, keratinocyte differentiation for conjunctival carcinoma, as well as endothelial cell migration for choroidal neovascularization membranes. The results are accessible at the Human Eye Transcriptome Atlas website at https://www.eye-transcriptome.com. In summary, this searchable transcriptome database enables easy exploration of ocular gene expression in healthy and diseased human ocular tissues without bioinformatics expertise. Thus, it provides rapid access to detailed insights into the molecular mechanisms of various ocular tissues and diseases, as well as the rapid retrieval of potential new diagnostic and therapeutic targets.


2021 ◽  
Vol 50 (9) ◽  
pp. 2591-2602
Author(s):  
Nur Syazana Abu Bakar ◽  
Noor Baity Saidi ◽  
Lina Rozano ◽  
Mohd Puad Abdullah ◽  
Suhaina Supian

Disease resistance in plants is commonly associated with resistance (R) genes that encode nucleotide binding site-leucine rich repeat (NBS-LRR) domains that are essential for pathogen recognition and defence signalling. In this study, we identified and analyzed the sequence of putative pathogen-responsive NB-ARC transcripts from Carica papaya transcriptome database, carried out the structural and phylogenetic analysis, and determined the expression profile of the transcripts in C. papaya challenged with Erwinia mallotivora. The findings indicate CpNBS1, the only pathogen-responsive NB-ARC protein identified in this study belongs to the CC-NBS-LRR group. Semi-quantitative PCR showed CpNBS1 was differentially expressed in response to E. mallotivora. Structural analysis of the 4993-Eksotika and 4993-Viorica translated proteins showed striking differences in terms of the number of β-sheets and α-helixes as well their ligand-binding surface, suggesting the role of the LRR domain in determining the specificity of recognition of E. mallotivora effector. Collectively, this study provides new insights into the role of NBS-LRR genes in C. papaya and its implications for enhancing of plant disease resistance through genetic engineering.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 743
Author(s):  
Jie Wang ◽  
Lin-Bao Zhu ◽  
Yan Ma ◽  
Ying-Xue Liu ◽  
Hui-Hua Cao ◽  
...  

β-1,3-glucan recognition proteins (βGRPs) as pattern recognition receptors (PRRs) play an important role in recognizing various pathogens and trigger complicated signaling pathways in insects. In this study, we identified a Bombyx mori β-1,3-glucan recognition protein gene named BmβGRP4, which showed differential expression, from a previous transcriptome database. The full-length cDNA sequence was 1244 bp, containing an open reading frame (ORF) of 1128 bp encoding 375 amino acids. BmβGRP4 was strongly expressed in the larval stages and highly expressed in the midgut of B. mori larvae in particular. After BmNPV infection, the expression of BmβGRP4 was reduced significantly in the midgut. Furthermore, a significant increase in the copy number of BmNPV was observed after the knockdown of BmβGRP4 in 5th instar larvae, while the overexpression of BmβGRP4 suppressed the proliferation of BmNPV in BmN cells. Subsequently, the expression analysis of several apoptosis-related genes and observation of the apoptosis morphology demonstrated that overexpression of BmβGRP4 facilitated apoptosis induced by BmNPV in BmN cells. Moreover, BmβGRP4 positively regulated the phosphatase and tensin homolog gene (BmPTEN), while expression of the inhibitor of apoptosis gene (BmIAP) was negatively regulated by BmβGRP4. Hence, we hypothesize that BmNPV infection might suppress BmPTEN and facilitate BmIAP to inhibit cell apoptosis by downregulating the expression of BmβGRP4 to escape host antiviral defense. Taken together, these results show that BmβGRP4 may play a role in B. mori response to BmNPV infection and lay a foundation for studying its functions.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1031
Author(s):  
Omar Paredes ◽  
Jhonatan B. López ◽  
César Covantes-Osuna ◽  
Vladimir Ocegueda-Hernández ◽  
Rebeca Romo-Vázquez ◽  
...  

Graph analysis allows exploring transcriptome compartments such as communities and modules for brain mesostructures. In this work, we proposed a bottom-up model of a gene regulatory network to brain-wise connectome workflow. We estimated the gene communities across all brain regions from the Allen Brain Atlas transcriptome database. We selected the communities method to yield the highest number of functional mesostructures in the network hierarchy organization, which allowed us to identify specific brain cell functions (e.g., neuroplasticity, axonogenesis and dendritogenesis communities). With these communities, we built brain-wise region modules that represent the connectome. Our findings match with previously described anatomical and functional brain circuits, such the default mode network and the default visual network, supporting the notion that the brain dynamics that carry out low- and higher-order functions originate from the modular composition of a GRN complex network


Author(s):  
Carlos Caurcel ◽  
Dominik R. Laetsch ◽  
Richard Challis ◽  
Sujai Kumar ◽  
Karim Gharbi ◽  
...  

As sequencing becomes more accessible and affordable, the analysis of genomic and transcriptomic data has become a cornerstone of many research initiatives. Communities with a focus on particular taxa or ecosystems need solutions capable of aggregating genomic resources and serving them in a standardized and analysis-friendly manner. Taxon-focussed resources can be more flexible in addressing the needs of a research community than can universal or general databases. Here, we present MolluscDB, a genome and transcriptome database for molluscs. MolluscDB offers a rich ecosystem of tools, including an Ensembl browser, a BLAST server for homology searches and an HTTP server from which any dataset present in the database can be downloaded. To demonstrate the utility of the database and verify the quality of its data, we imported data from assembled genomes and transcriptomes of 22 species, estimated the phylogeny of Mollusca using single-copy orthologues, explored patterns of gene family size change and interrogated the data for biomineralization-associated enzymes and shell matrix proteins. MolluscDB provides an easy-to-use and openly accessible data resource for the research community. This article is part of the Theo Murphy meeting issue ‘Molluscan genomics: broad insights and future directions for a neglected phylum’.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yang Gao ◽  
Ruifan Ren ◽  
Jing Peng ◽  
Dongwei Wang ◽  
Xiaobin Shi ◽  
...  

Myzus persicae (Sulzer), commonly known as the green peach aphid, is a notorious pest that causes substantial losses to a range of crops and can transmit several plant viruses, including potato virus Y (PVY). Chemical insecticides provide only partial control of this pest and their use is not environmentally sustainable. In recent years, many genes related to growth, development, and reproduction have been used as targets for pest control. These include Gustavus (Gus), a highly conserved gene that has been reported to play an essential part in the genesis of germline cells and, hence, in fecundity in the model insect Drosophila melanogaster. We hypothesized that the Gustavus (Gus) gene was a potential target that could be used to regulate the M. persicae population. In this study, we report the first investigation of an ortholog of Gus in M. persicae, designated MpGus, and describe its role in the fecundity of this insect. First, we identified the MpGus mRNA sequence in the M. persicae transcriptome database, verified its identity with reverse transcription-polymerase chain reaction (RT-PCR), and then evaluated the transcription levels of MpGus in M. persicae nymphs of different instars and tissues with real-time quantitative PCR (RT-qPCR). To investigate its role in regulating the fecundity of M. persicae, we used RNA interference (RNAi) to silence the expression of MpGus in adult insects; this resulted in a significant reduction in the number of embryos (50.6%, P < 0.01) and newborn nymphs (55.7%, P < 0.01) in the treated aphids compared with controls. Interestingly, MpGus was also significantly downregulated in aphids fed on tobacco plants that had been pre-infected with PVYN, concomitant with a significant reduction (34.1%, P < 0.01) in M. persicae fecundity. Collectively, these data highlight the important role of MpGus in regulating fecundity in M. persicae and indicate that MpGus is a promising RNAi target gene for control of this pest species.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 83
Author(s):  
Stanisław Knutelski ◽  
Mona Awad ◽  
Natalia Łukasz ◽  
Michał Bukowski ◽  
Justyna Śmiałek ◽  
...  

Red palm weevil (Rhynchophorus ferrugineus Olivier, 1791, Coleoptera: Curculionidae) is a destructive pest of palms, rapidly extending its native geographical range and causing large economic losses worldwide. The present work describes isolation, identification, and bioinformatic analysis of antibacterial proteins and peptides from the immunized hemolymph of this beetle. In total, 17 different bactericidal or bacteriostatic compounds were isolated via a series of high-pressure liquid chromatography steps, and their partial amino acid sequences were determined by N-terminal sequencing or by mass spectrometry. The bioinformatic analysis of the results facilitated identification and description of corresponding nucleotide coding sequences for each peptide and protein, based on the recently published R. ferrugineus transcriptome database. The identified compounds are represented by several well-known bactericidal factors: two peptides similar to defensins, one cecropin-A1-like peptide, and one attacin-B-like protein. Interestingly, we have also identified some unexpected compounds comprising five isoforms of pheromone-binding proteins as well as seven isoforms of odorant-binding proteins. The particular role of these factors in insect response to bacterial infection needs further investigation.


Sign in / Sign up

Export Citation Format

Share Document