ornithodoros moubata
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 16)

H-INDEX

30
(FIVE YEARS 1)

Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1306
Author(s):  
Simbarashe Chitanga ◽  
Herman M. Chambaro ◽  
Lavel C. Moonga ◽  
Kyoko Hayashida ◽  
Junya Yamagishi ◽  
...  

Rickettsial pathogens are amongst the emerging and re-emerging vector-borne zoonoses of public health importance. Though traditionally considered to be transmitted by ixodid ticks, the role of argasid ticks as vectors of these pathogens is increasingly being recognized. While bat-feeding (Ornithodoros faini) and chicken-feeding (Argas walkerae) argasid ticks have been shown to harbor Rickettsia pathogens in Zambia, there are currently no reports of Rickettsia infection in southern Africa from warthog-feeding (Phacochoerus africanus) soft ticks, particularly Ornithodoros moubata and Ornithodoros porcinus. Our study sought to expand on the existing knowledge on the role of soft ticks in the epidemiology of Rickettsia species through screening for Rickettsia pathogens in warthog burrow-dwelling soft ticks from two national parks in Zambia. The tick species from which Rickettsia were detected in this study were identified as Ornithodoros porcinus, and an overall minimal Rickettsia infection rate of 19.8% (32/162) was observed. All of the sequenced Rickettsia were identified as Rickettsia lusitaniae based on nucleotide sequence similarity and phylogenetic analysis of the citrate synthase (gltA) and 17kDa common antigen (htrA) genes. Utilizing all of the gltA (n = 10) and htrA (n = 12) nucleotide sequences obtained in this study, BLAST analysis showed 100% nucleotide similarity to Rickettsia lusitaniae. Phylogenetic analysis revealed that all of the Zambian gltA and htrA gene sequences could be grouped with those of Rickettsia lusitaniae obtained in various parts of the world. Our data suggest that Rickettsia lusitaniae has a wider geographic and vector range, enhancing to our understanding of Rickettsia lusitaniae epidemiology in sub-Saharan Africa.


Author(s):  
Xing-Li Xu ◽  
Hu Yang

Abstract Rhipicephalus microplus is the main blooding-sucking ectoparasite of bovines and is regarded as important vectors of animal diseases such as Babesiosis. Mining protective antigens of R. microplus to develop antitick vaccine is the most potential tick control strategy. In this study, the specific primers were designed according to the conserved nucleotide sequence of enolase gene in Haemaphysalis flava, Ixodes ricinus, and Ornithodoros moubata. The fragment of enolase gene was obtained by PCR using cDNA template from fully engorged female R. microplus. The full-length cDNA of enolase gene was amplified using rapid amplification of cDNA ends (RACE). Expression pattern of enolase gene in different tissues of R. microplus was analyzed by real-time quantitative PCR (qRT-PCR). Results showed that the full-length enolase cDNA containing 2052 bp was obtained successfully. The complete cDNA included an ORF of 1305 nucleotides encoding a protein of 434 amino acids. The enolase exhibited 85.0% amino acid identity to the enolase of H. flava, 81.1% to I. ricinus enolase, and 81.3% to O. moubata enolase. qRT-PCR analysis indicated that the enolase had the highest expression in the salivary gland of R. microplus.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ana Oleaga ◽  
Angel Carnero-Morán ◽  
M. Luz Valero ◽  
Ricardo Pérez-Sánchez

Abstract Background The argasid tick Ornithodoros moubata is the main vector in mainland Africa of African swine fever virus and the spirochete Borrelia duttoni, which causes human relapsing fever. The elimination of populations of O. moubata would contribute to the prevention and control of these two serious diseases. Anti-tick vaccines are an eco-friendly and sustainable means of eliminating tick populations. Tick saliva forms part of the tick-host interface, and knowledge of its composition is key to the identification and selection of vaccine candidate antigens. The aim of the present work is to increase the body of data on the composition of the saliva proteome of adult O. moubata ticks, particularly of females, since in-depth knowledge of the O. moubata sialome will allow the identification and selection of novel salivary antigens as targets for tick vaccines. Methods We analysed samples of female and male saliva using two different mass spectrometry (MS) approaches: data-dependent acquisition liquid chromatography-tandem MS (LC–MS/MS) and sequential window acquisition of all theoretical fragment ion spectra–MS (SWATH-MS). To maximise the number of proteins identified, a proteomics informed by transcriptomics analysis was applied using the O. moubata salivary transcriptomic dataset previously obtained by RNA-Seq. Results SWATH-MS proved to be superior to LC–MS/MS for the study of female saliva, since it identified 61.2% more proteins than the latter, the reproducibility of results was enhanced with its use, and it provided a quantitative picture of salivary components. In total, we identified 299 non-redundant proteins in the saliva of O. moubata, and quantified the expression of 165 of these in both male and female saliva, among which 13 were significantly overexpressed in females and 40 in males. These results indicate important quantitative differences in the saliva proteome between the sexes. Conclusions This work expands our knowledge of the O. moubata sialome, particularly that of females, by increasing the number of identified novel salivary proteins, which have different functions at the tick–host feeding interface. This new knowledge taken together with information on the O. moubata sialotranscriptome will allow a more rational selection of salivary candidates as antigen targets for tick vaccine development. Graphical Abstract


2021 ◽  
Author(s):  
Ana Oleaga ◽  
Angel Carnero-Moran ◽  
M. Luz Valero ◽  
Ricardo Pérez-Sánchez

Abstract Background The argasid tick Ornithodoros moubata is the main vector in mainland Africa of the African swine fever virus and the spirochete Borrelia duttoni, which causes human relapsing fever. Elimination of O. moubata populations would contribute to the prevention and control of these two severe diseases. The development of anti-tick vaccines is an eco-friendly and sustainable method for the elimination of tick populations. The tick saliva forms part of the tick-host interface and knowing its composition is key for the identification and selection of vaccine candidate antigens. The aim of the present work is to expand the data on the saliva proteome composition of O. moubata adult ticks, particularly of female ticks, since a more in-depth knowledge of the O. moubata sialome will allow identifying and selecting novel salivary antigens as targets for tick vaccines. Methods We have analysed samples of female and male saliva using two different mass spectrometry approaches: data-dependent acquisition LC-MS/MS and sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS). To maximise the number of protein identifications, a proteomics informed by transcriptomics (PIT) analysis was applied using the O. moubata salivary transcriptomic dataset previously obtained by RNAseq. Results The SWATH-MS proved to be superior to LC-MS/MS in the study of female saliva since it increased by 60% the number of identified proteins, enhanced the reproducibility of the results and provided a quantitative image of the saliva components. As a whole, we have identified 299 non-redundant proteins in the O. moubata saliva and quantified the expression of 165 of them in both male and female saliva, among which 13 were significantly overexpressed in females and 40 in males. These results evidence important quantitative differences between sexes in the saliva proteome. Conclusions This work expand our knowledge of the O. moubata sialome, particularly of female ticks, by increasing the identification of novel salivary proteins and functions at the tick–host feeding interface. The integration of this new knowledge together with the information from the O. moubata sialotranscriptome will allow a more rational selection of the salivary candidates as antigen targets for tick vaccine development.


2021 ◽  
Vol 15 (2) ◽  
pp. e0009105
Author(s):  
Ana Oleaga ◽  
Beatriz Soriano ◽  
Carlos Llorens ◽  
Ricardo Pérez-Sánchez

The argasid tick Ornithodoros moubata is the main vector of human relapsing fever (HRF) and African swine fever (ASF) in Africa. Salivary proteins are part of the host-tick interface and play vital roles in the tick feeding process and the host infection by tick-borne pathogens; they represent interesting targets for immune interventions aimed at tick control. The present work describes the transcriptome profile of salivary glands of O. moubata and assesses the gene expression dynamics along the trophogonic cycle using Illumina sequencing. De novo transcriptome assembling resulted in 71,194 transcript clusters and 41,011 annotated transcripts, which represent 57.6% of the annotation success. Most salivary gene expression takes place during the first 7 days after feeding (6,287 upregulated transcripts), while a minority of genes (203 upregulated transcripts) are differentially expressed between 7 and 14 days after feeding. The functional protein groups more abundantly overrepresented after blood feeding were lipocalins, proteases (especially metalloproteases), protease inhibitors including the Kunitz/BPTI-family, proteins with phospholipase A2 activity, acid tail proteins, basic tail proteins, vitellogenins, the 7DB family and proteins involved in tick immunity and defence. The complexity and functional redundancy observed in the sialotranscriptome of O. moubata are comparable to those of the sialomes of other argasid and ixodid ticks. This transcriptome provides a valuable reference database for ongoing proteomics studies of the salivary glands and saliva of O. moubata aimed at confirming and expanding previous data on the O. moubata sialoproteome.


2021 ◽  
Vol 15 (1) ◽  
pp. e0009008
Author(s):  
Marie Buysse ◽  
Maxime Duhayon ◽  
Franck Cantet ◽  
Matteo Bonazzi ◽  
Olivier Duron

Q fever is a widespread zoonotic disease caused by the intracellular bacterium Coxiella burnetii. While transmission is primarily but not exclusively airborne, ticks are usually thought to act as vectors on the basis of early microscopy studies. However, recent observations revealed that endosymbionts of ticks have been commonly misidentified as C. burnetii, calling the importance of tick-borne transmission into question. In this study, we re-evaluated the vector competence of the African soft tick Ornithodoros moubata for an avirulent strain of C. burnetii. To this end, we used an artificial feeding system to initiate infection of ticks, specific molecular tools to monitor further infections, and culture assays in axenic and cell media to check for the viability of C. burnetii excreted by ticks. We observed typical traits associated with vector competence: The exposure to an infected blood meal resulted in viable and persistent infections in ticks, trans-stadial transmissions of infection from nymphs to adults and the ability of adult ticks to transmit infectious C. burnetii. However, in contrast to early studies, we found that infection differed substantially between tick organs. In addition, while adult female ticks were infected, we did not observe C. burnetii in eggs, suggesting that transovarial transmission is not effective. Finally, we detected only a sporadic presence of C. burnetii DNA in tick faeces, but no living bacterium was further isolated in culture assays, suggesting that excretion in faeces is not a common mode of transmission in O. moubata.


2021 ◽  
pp. 74-83
Author(s):  
DeMar Taylor ◽  
Mari Ogihara

Abstract This expert opinion considers the physiological processes regulating reproduction and immune responses in the soft tick, Ornithodoros moubata, and the potential impact of climate change.


2020 ◽  
Vol 9 (17) ◽  
Author(s):  
Amélie Chastagner ◽  
Rémi Pereira de Oliveira ◽  
Evelyne Hutet ◽  
Mireille Le Dimna ◽  
Frédéric Paboeuf ◽  
...  

Here, we report the coding-complete genome sequence of African swine fever (ASF) virus strain Liv13/33, isolated from experimentally infected pigs and Ornithodoros moubata ticks. The 11 sequences that we obtained harbored no notable differences to each other, and all of them were closely related to the genome sequence of the Mkuzi 1979 strain of genotype I.


Sign in / Sign up

Export Citation Format

Share Document