stepping response
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 156 (A3) ◽  
Author(s):  
C A Duncan ◽  
W J Albert ◽  
R G Langlois ◽  
S N MacKinnon

The purpose of this study was to determine the differences in human stepping response reaction between constrained and unconstrained standing while being exposed to simulated wave-induced platform motions. Twenty subjects (10 male and 10 female), with limited experience recreating or working in motion-rich environments, performed a constrained and an unconstrained standing task on a six-degrees-of-freedom motion bed while being exposed to two different simulated platform motion conditions. Stepping occurrence was greater during unconstrained standing than constrained standing during all three motion conditions. However, no significant differences in platform kinematics were found between stepping cases. These results suggest that stepping occurs more frequently than originally hypothesized. As such, stepping should not be considered as a last resource when all fixed-support options have been exhausted. This should be taken into consideration to ensure ecological validity when developing models to predict stepping occurrence.


Author(s):  
Simon Krašna ◽  
Arne Keller ◽  
Astrid Linder ◽  
Ary P. Silvano ◽  
Jia-Cheng Xu ◽  
...  

This study investigates the response of standing passengers on public transport who experience balance perturbations during non-collision incidents. The objective of the study was to analyse the effects of the perturbation characteristics on the initial responses of the passengers and their ability to maintain their balance. Sled tests were conducted on healthy volunteers aged 33.8 ± 9.2 years (13 males, 11 females) standing on a moving platform, facilitating measurements of the initial muscle activity and stepping response of the volunteers. The volunteers were exposed to five different perturbation profiles representing typical braking and accelerating manoeuvres of a public transport bus in the forward and backward direction. The sequence of muscle activations in lower-extremity muscles was consistent for the perturbation pulses applied. For the three acceleration pulses combining two magnitudes for acceleration (1.5 and 3.0 m/s2) and jerk (5.6 and 11.3 m/s3), the shortest muscle onset and stepping times for the passengers to recover their balance were observed with the higher jerk value, while the profile with the higher acceleration magnitude and longer duration induced more recovery steps and a higher rate of safety-harness deployment. The tendency for a shorter response time was observed for the female volunteers. For the two braking pulses (1.0 and 2.5 m/s2), only the lower magnitude pulse allowed balance recovery without compensatory stepping. The results obtained provide a reference dataset for human body modelling, the development of virtual test protocols, and operational limits for improving the safety of public transportation vehicles and users.


2021 ◽  
Vol 8 ◽  
Author(s):  
Paulo H. S. Pelicioni ◽  
Stephen R. Lord ◽  
Daina L. Sturnieks ◽  
Bethany Halmy ◽  
Jasmine C. Menant

Background: Choice stepping reaction time tasks are underpinned by neuropsychological, sensorimotor, and balance systems and therefore offer good indices of fall risk and physical and cognitive frailty. However, little is known of the neural mechanisms for impaired stepping and associated fall risk in older people. We investigated cognitive and motor cortical activity during cognitively demanding stepping reaction time tasks using functional near-infrared spectroscopy (fNIRS) in older people at low and high fall risk.Methods: Ninety-five older adults [mean (SD) 71.4 (4.9) years, 23 men] were categorized as low or high fall risk [based on 12-month fall history (≥2 falls) and/or Physiological Profile Assessment fall risk score ≥1]. Participants performed a choice stepping reaction time test and a more cognitively demanding Stroop stepping task on a computerized step mat. Cortical activity in cognitive [dorsolateral prefrontal cortex (DLPFC)] and motor (supplementary motor area and premotor cortex) regions was recorded using fNIRS. Stepping performance and cortical activity were contrasted between the groups and between the choice and Stroop stepping conditions.Results: Compared with the low fall risk group (n = 71), the high fall risk group (n = 24) exhibited significantly greater DLPFC activity and increased intra-individual variability in stepping response time during the Stroop stepping task. The high fall risk group DLPFC activity was greater during the performance of Stroop stepping task in comparison with choice stepping reaction time. Regardless of group, the Stroop stepping task elicited increased cortical activity in the supplementary motor area and premotor cortex together with increased mean and intra-individual variability of stepping response times.Conclusions: Older people at high fall risk exhibited increased DLPFC activity and stepping response time variability when completing a cognitively demanding stepping test compared with those at low fall risk and to a simpler choice-stepping reaction time test. This increased hemodynamic response might comprise a compensatory process for postural control deficits and/or reflect a degree of DLPFC neural inefficiency in people with increased fall risk.


Author(s):  
Gabriel Moisan ◽  
Pornprom Chayasit ◽  
Rumpa Boonsinsukh ◽  
Christopher James Nester ◽  
Kristen Hollands

2020 ◽  
Vol 82 ◽  
pp. 75-82
Author(s):  
Pornprom Chayasit ◽  
Kristen Hollands ◽  
Mark Hollands ◽  
Rumpa Boonsinsukh

2020 ◽  
Author(s):  
Andrej Olenšek ◽  
Matjaž Zadravec ◽  
Helena Burger ◽  
Zlatko Matjačić

Abstract BackgroundDue to disrupted motor and proprioceptive function lower limb amputation imposes considerable challenges associated with balance and greatly increases risk of falling in case of perturbations during walking. The aim of this study was to investigate dynamic balancing responses in unilateral transtibial amputees when they were subjected to perturbing pushes to the pelvis at the time of foot strike on nonamputated and amputated side during slow walking.MethodsFourteen subjects with unilateral transtibial amputation and nine healthy subjects participated in the study. They were subjected to perturbations that were delivered to the pelvis in different directions at the time of foot strike of either left or right leg. Centre of pressure and centre of mass positions, duration of in-stance and stepping periods as well as ground reaction forces were recorded and analysed for significant differences in dynamic balancing responses between healthy subjects and subjects with amputation when subjected to perturbation upon entering stance phases with nonamputated or amputated side.ResultsWhen perturbations were delivered at the time of foot strike of nonamputated leg subjects with amputation were able to modulate centre of pressure and ground reaction force similarly as healthy subjects. There was a complete lack of in-stance response when perturbations were delivered at the time of foot strike of amputated leg. Instead they used stepping strategy and adjusted placement of nonamputated leg in the ensuing stance phase to increase (forward perturbation) or decrease (backward perturbation) step length or making a cross-step (outward perturbation) which resulted in higher displacement of centre of mass. However, when perturbations were directed inward healthy subjects and subjects with amputation reacted primarily with a stepping response regardless whether healthy, nonamputated or amputated leg was in stance phase.ConclusionsResults of this study suggest that due to the absence of COP modulation mechanism that is normally supplied by calf muscles people with unilateral transtibial amputation are compelled to choose stepping strategy over in-stance strategy when they are subjected to perturbation on the amputated side. However the stepping response is less efficient than in-stance response which may potentially be significant contributor to frequent falls.


2017 ◽  
Vol 23 (6) ◽  
pp. 664-680 ◽  
Author(s):  
Prithvi K. Shah ◽  
Igor Lavrov

Significant advancements in spinal epidural stimulation (ES) strategies to enable volitional motor control in persons with a complete spinal cord injury (SCI) have generated much excitement in the field of neurorehabilitation. Still, an obvious gap lies in the ability of ES to effectively generate a robust locomotor stepping response after a complete SCI in rodents, but not in humans. In order to reveal potential discrepancies between rodent and human studies that account for this void, in this review, we summarize the findings of studies that have utilized ES strategies to enable successful hindlimb stepping in spinal rats. Recent clinical and preclinical evidence indicates that motor training with ES plays a crucial role in tuning spinal neural circuitry to generate meaningful motor output. Concurrently administered pharmacology can also facilitate the circuitry to provide near optimal motor performance in SCI rats. However, as of today, the evidence for pharmacological agents to enhance motor function in persons with complete SCI is insignificant. These and other recent findings discussed in this review provide insight into addressing the translational gap, guide the design of relevant preclinical experiments, and facilitate development of new approaches for motor recovery in patients with complete SCIs.


Sign in / Sign up

Export Citation Format

Share Document