Accelerating Monte Carlo neutron transport by approximating thermal cross sections with functional forms

2022 ◽  
Vol 169 ◽  
pp. 108819
Author(s):  
Valeria Raffuzzi ◽  
Eugene Shwageraus ◽  
Lee Morgan
2021 ◽  
Vol 9 ◽  
Author(s):  
Francesc Salvat ◽  
José Manuel Quesada

After a summary description of the theory of elastic collisions of nucleons with atoms, we present the calculation of a generic database of differential and integrated cross sections for the simulation of multiple elastic collisions of protons and neutrons with kinetic energies larger than 100 keV. The relativistic plane-wave Born approximation, with binding and Coulomb-deflection corrections, has been used to calculate a database of proton-impact ionization of K-shell and L-, M-, and N-subshells of neutral atoms These databases cover the whole energy range of interest for all the elements in the periodic system, from hydrogen to einsteinium (Z = 1–99); they are provided as part of the penh distribution package. The Monte Carlo code system penh for the simulation of coupled electron-photon-proton transport is extended to account for the effect of the transport of neutrons (released in proton-induced nuclear reactions) in calculations of dose distributions from proton beams. A simplified description of neutron transport, in which neutron-induced nuclear reactions are described as a fractionally absorbing process, is shown to give simulated depth-dose distributions in good agreement with those generated by the Geant4 code. The proton-impact ionization database, combined with the description of atomic relaxation data and electron transport in penelope, allows the simulation of proton-induced x-ray emission spectra from targets with complex geometries.


2019 ◽  
Vol 9 (2) ◽  
pp. 17-24
Author(s):  
Jakub Lüley ◽  
Branislav Vrban ◽  
Štefan Čerba ◽  
Filip Osuský ◽  
Vladimír Nečas

Stochastic Monte Carlo (MC) neutron transport codes are widely used in various reactorphysics applications, traditionally related to criticality safety analyses, radiation shielding and validation of deterministic transport codes. The main advantage of Monte Carlo codes lies in their ability to model complex and detail geometries without the need of simplifications. Currently, one of the most accurate and developed stochastic MC code for particle transport simulation is MCNP. To achieve the best real world approximations, continuous-energy (CE) cross-section (XS) libraries are often used. These CE libraries consider the rapid changes of XS in the resonance energy range; however, computing-intensive simulations must be performed to utilize this feature. To broaden ourcomputation abilities for industrial application and partially to allow the comparison withdeterministic codes, the CE cross section library of the MCNP code is replaced by the multigroup (MG) cross-section data. This paper is devoted to the cross-section processing scheme involving modified versions of TRANSX and CRSRD codes. Following this approach, the same data may be used in deterministic and stochastic codes. Moreover, using formerly developed and upgraded crosssection processing scheme, new MG libraries may be tailored to the user specific applications. For demonstration of the proposed cross-section processing scheme, the VVER-440 benchmark devoted to fuel assembly and pip-by-pin power distribution was selected. The obtained results are compared with continues energy MCNP calculation and multigroup KENO-VI calculation.


2021 ◽  
Vol 2 (1) ◽  
pp. 86-96
Author(s):  
Adam G. Nelson ◽  
William Boyd ◽  
Paul K. Romano

The angular dependence of flux-weighted multigroup cross sections is commonly neglected when generating multigroup libraries. The error of this flux separability approximation is typically not isolated from other error sources due to a lack of availability of library generation and corresponding solvers that cannot relax this approximation. These errors can now be isolated and quantified with the availability of a multigroup Monte Carlo transport and multigroup library-generation capability in the OpenMC Monte Carlo transport code. This work will discuss relevant details of the OpenMC implementation, provide an example case useful for detailing the type of errors one can expect from making the flux separability approximation, and end with more realistic problems which show the impact of the approximation and highlight how it can strongly arise from an energy-dependent resonance absorption effect. Since the angle-dependence is intrinsically linked to the energy group structure, these examples also show that relaxing the flux separability approximation with angle-dependent cross sections could be used to reduce either the fine-tuning required to set a multigroup energy structure for a specific reactor type or the number of energy groups required to obtain a desired level of accuracy for a given problem. This trade-off could increase the costs of generating multigroup cross sections, and has the potential to require more memory for storing the multigroup library during the transport calculations, but it can significantly reduce the computational time required since the runtime of a discrete ordinates or method of characteristics neutron transport solver scales roughly linearly with the number of groups.


2021 ◽  
Vol 247 ◽  
pp. 04017
Author(s):  
Paul E. Burke ◽  
Kyle E. Remley ◽  
David P. Griesheimer

In radiation transport calculations, the effects of material temperature on neutron/nucleus interactions must be taken into account through Doppler broadening adjustments to the microscopic cross section data. Historically, Monte Carlo transport simulations have accounted for this temperature dependence by interpolating among precalculated Doppler broadened cross sections at a variety of temperatures. More recently, there has been much interest in on-the-fly Doppler broadening methods, where reference data is broadened on-demand during particle transport to any temperature. Unfortunately, Doppler broadening operations are expensive on traditional central processing unit (CPU) architectures, making on-the-fly Doppler broadening unaffordable without approximations or complex data preprocessing. This work considers the use of graphics processing unit (GPU)s, which excel at parallel data processing, for on-the-fly Doppler broadening in continuous-energy Monte Carlo simulations. Two methods are considered for the broadening operations – a GPU implementation of the standard SIGMA1 algorithm and a novel vectorized algorithm that leverages the convolution properties of the broadening operation in an attempt to expose additional parallelism. Numerical results demonstrate that similar cross section lookup throughput is obtained for on-the-fly broadening on a GPU as cross section lookup throughput with precomputed data on a CPU, implying that offloading Doppler broadening operations to a GPU may enable on-the-fly temperature treatment of cross sections without a noticeable reduction in cross section processing performance in Monte Carlo transport codes.


2021 ◽  
Vol 247 ◽  
pp. 02011
Author(s):  
Seog Kim Kang ◽  
Andrew M. Holcomb ◽  
Friederike Bostelmann ◽  
Dorothea Wiarda ◽  
William Wieselquist

The SCALE-XSProc multigroup (MG) cross section processing procedure based on the CENTRM pointwise slowing down calculation is the primary procedure to process problem-dependent self-shielded MG cross sections and scattering matrices for neutron transport calculations. This procedure supports various cell-based geometries including slab, 1-D cylindrical, 1-D spherical and 2-D rectangular configurations and doubly heterogeneous particulate fuels. Recently, this procedure has been significantly improved to be applied to any advanced reactor analysis covering thermal and fast reactor systems, and to be comparable to continuous energy (CE) Monte Carlo calculations. Some reactivity bias and reaction rate differences have been observed compared with CE Monte Carlo calculations, and several areas for improvement have been identified in the SCALE-XSProc MG cross section processing: (1) resonance self-shielding calculations within the unresolved resonance range, (2) 10 eV thermal cut-off energy for the free gas model, (3) on-the-fly adjustments to the thermal scattering matrix, (4) normalization of the pointwise neutron flux, and (5) fine MG energy structure. This procedure ensures very accurate MG cross section processing for high-fidelity deterministic reactor physics analysis for various advanced reactor systems.


2021 ◽  
Vol 247 ◽  
pp. 06011
Author(s):  
A. Bernal ◽  
M. Pecchia ◽  
D. Rochman ◽  
A. Vasiliev ◽  
H. Ferroukhi

The main goal of this work is to perform pin-by-pin calculations of Swiss LWR fuel assemblies with neutron transport deterministic methods. At Paul Scherrer Institut (PSI), LWR calculations are performed with the core management system CMSYS, which is based on the Studsvik suite of codes. CMSYS includes models for all the Swiss reactors validated against a database of experimental information. Moreover, PSI has improved the pin power calculations by developing models of Swiss fuel assemblies for the Monte Carlo code MCNP, with the isotopic compositions obtained from the In-Core Fuel Management data of the Studsvik suite of codes, by using the SNF code. A step forward is to use a neutron code based on fast deterministic neutron transport methods. The method used in this work is based on a planar Method of Characteristics in which the axial coupling is solved by 1D SP3 method. The neutron code used is nTRACER. Thus, the methodology of this work develops nTRACER models of Swiss PWR fuel assemblies, in which the fuel of each pin and axial level is modelled with the isotopic composition obtained from SNF. This methodology was applied to 2D and 3D calculations of a Swiss PWR fuel assembly. However, this method has two main limitations. First, the cross sections libraries of nTRACER lack some of the isotopes obtained by SNF. Fortunately, this work proves that the missing isotopes do not have a strong effect on keff and the power distribution. Second, the 3D models require high computational memory resources, that is, more than 260 Gb. Thus, the nTRACER code was modified, so now it uses only 8 Gb, without any loss of accuracy. Finally, the keff and power results are compared with Monte Carlo calculations obtained by Serpent.


Author(s):  
Ryuichi Shimizu ◽  
Ze-Jun Ding

Monte Carlo simulation has been becoming most powerful tool to describe the electron scattering in solids, leading to more comprehensive understanding of the complicated mechanism of generation of various types of signals for microbeam analysis.The present paper proposes a practical model for the Monte Carlo simulation of scattering processes of a penetrating electron and the generation of the slow secondaries in solids. The model is based on the combined use of Gryzinski’s inner-shell electron excitation function and the dielectric function for taking into account the valence electron contribution in inelastic scattering processes, while the cross-sections derived by partial wave expansion method are used for describing elastic scattering processes. An improvement of the use of this elastic scattering cross-section can be seen in the success to describe the anisotropy of angular distribution of elastically backscattered electrons from Au in low energy region, shown in Fig.l. Fig.l(a) shows the elastic cross-sections of 600 eV electron for single Au-atom, clearly indicating that the angular distribution is no more smooth as expected from Rutherford scattering formula, but has the socalled lobes appearing at the large scattering angle.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bünyamin Aygün ◽  
Erdem Şakar ◽  
Abdulhalik Karabulut ◽  
Bünyamin Alım ◽  
Mohammed I. Sayyed ◽  
...  

AbstractIn this study, the fast neutron and gamma-ray absorption capacities of the new glasses have been investigated, which are obtained by doping CoO,CdWO4,Bi2O3, Cr2O3, ZnO, LiF,B2O3 and PbO compounds to SiO2 based glasses. GEANT4 and FLUKA Monte Carlo simulation codes have been used in the planning of the samples. The glasses were produced using a well-known melt-quenching technique. The effective neutron removal cross-sections, mean free paths, half-value layer, and transmission numbers of the fabricated glasses have been calculated through both GEANT4 and FLUKA Monte Carlo simulation codes. Experimental neutron absorbed dose measurements have been carried out. It was found that GS4 glass has the best neutron protection capacity among the produced glasses. In addition to neutron shielding properties, the gamma-ray attenuation capacities, were calculated using newly developed Phy-X/PSD software. The gamma-ray shielding properties of GS1 and GS2 are found to be equivalent to Pb-based glass.


Sign in / Sign up

Export Citation Format

Share Document