range calculation
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
pp. 4-14
Author(s):  
Ruslan Tsukanov ◽  
Viktor Riabkov

A problem facing world commercial aviation is a provision of the flight range and an increase in the fuel efficiency of transport category airplanes using fuel trim transfer application, which allows for decreasing airplane trim drag at cruise flight. In the existing mathematical models, center-of-gravity position is usually assumed fixed, but with fuel usage, center-of-gravity shifts within the definite range of center-of-gravity positions. Until the fuel trim transfer was not used in airplanes, the center-of-gravity shift range was rather short, that allowed to use the specified assumption without any considerable mistakes. In case of fuel trim transfer use, center-of-gravity shifts can reach 15…20 % of mean aerodynamic chord, that requires considering the center-of-gravity actual position during the flight range calculation. Early made estimated calculations showed the necessity of following mathematical model improvement using accounting the real engine throttling characteristics. The goal of this publication is to develop a method of flight range calculation taking transport category airplane into account actual center-of-gravity position with fuel using and variation in engine-specific fuel consumption according to their throttling characteristics. On the basis of real data from engine maintenance manuals, formulas are obtained for approximation throttling characteristics of turbofan engines in the form of dimensionless specific fuel consumption (related to the specific fuel consumption at full thrust) dependence on the engine throttling coefficient. A mathematical model (algorithm and its program implementation using С language in Power Unit 11.7 R03 system) has been developed to calculate the airplane flight range accounting its actual center-of-gravity position shift with fuel usage and variation in specific fuel consumption according to engine throttling characteristics. Using comparison with known payload-range diagram, adequacy of developed mathematical model is shown. Recommendations to improve the mathematical model are also given.


Author(s):  
Thanathorn Phoka ◽  
Kritsana Kumphet ◽  
Wansuree Massagram

Communication radio-based AUV localization was demonstrated in this study. The proposed solution was formulated and derived for both stationary and linearly drifting objects of interest and is possible of operating in GNSS-denied operations. Linear curve-fit to experimental data for radio-distance mapping with range calculation was tested in terrestrial and marine environments. The use of packet radio equipment on a secondary basis for localization may present a potential for reduced requirements for high precision or task-specific hardware in the future.


2019 ◽  
Vol 58 (9) ◽  
pp. 096001
Author(s):  
Mustapha Krim ◽  
Jamal Inchaouh ◽  
Noura Harakat ◽  
Abdenbi Khouaja ◽  
Meriem Fiak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document