emission function
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
BAYU SETYO WIBOWO ◽  
SUSATYO HANDOKO ◽  
HERMAWAN HERMAWAN

ABSTRAKKebutuhan listrik di Kalimantan Selatan dan Tengah menjadi semakin bertambah dikarenakan meningkatnya jumlah penduduk dan ekonomi serta mahalnya biaya pembangkitan listrik. Tujuan penelitian ialah meminimalkan biaya pembangkitan termal dan memecahkan permasalahan ekonomi dan emisi. Penelitian menggunakan metode Dragonfly algortihm yang mengkaji tentang optimasi ekonomi dan emisi pada PLTU Asam-asam, Pulang Pisau dan PLTA Riam Kanan dengan membuat program dengan menginputkan Cost Function dan Emission Function. Didapatkan rata-rata biaya pembangkitan dan emisi dari tanggal 1 – 4 September 2020 yaitu pada kasus 1 biaya pembangkit sebesar Rp 335.855.120 dan emisi sebesar 628,6 ton, pada kasus 2 biaya pembangkit sebesar Rp 251.891.340 dan emisi sebesar 943 ton, pada kasus 3 biaya pembangkit sebesar Rp 167.935.460 dan emisi sebesar 1257,3ton. Faktor pembobotan akan mempengaruhi biaya pembangkitan dan emisi yang dihasilkan.Kata kunci: Pembangkit Listrik, Dragonfly algortihm, Faktor Pembobotan ABSTRACTThe demand for electricity in South and Central Kalimantan is increasing due to the increasing population and economy as well as the high cost of generating electricity. The research objective is to minimize the cost of thermal generation and solve economic and emission problems. This research uses the Dragonfly algorithm method which examines the economic optimization and emissions at LTU Asam-Asam, Pulang Pisau and PLTA Riam Kanan by making a program by inputting Cost Function and Emission Function. Obtained the average cost of generation and emissions from September 1 - 4 2020, namely in case 1 the generator cost is IDR 335,855,120 and the emission is 628.6 tons, in case 2 the generator cost is IDR 251,891,340 and the emission is 943 tons, in case 3 the cost of the generator is Rp. 167,935,460 and the emission is 1257.3 tonnes. The weighting factor will affect the cost of generation and the resulting emissions.Keywords: Power Plant, Dragonfly algorithm, Weighting Factor



2019 ◽  
Vol 25 (1) ◽  
pp. 44-65 ◽  
Author(s):  
Neophyta Empora ◽  
Theofanis P. Mamuneas ◽  
Thanasis Stengos

AbstractUsing U.S. state-level data for the period 1973–1994, this study models the relationship between emissions, output and pollution abatement by defining an emissions function, in a manner that is consistent with the residual (emissions) generation mechanism and firms' optimizing behavior. It thus accounts for factors that were previously unaccounted for or addressed only individually. Applications using this comprehensive setting can offer more informed insights for policy-making, something that is particularly useful for developing countries that face the environmental degradation that comes together with the benefits of economic growth. Using nonparametric econometric techniques as well as threshold regression, the empirical results show that there is a positive nonlinear relationship between emissions and output, rejecting an inverted-U type of relationship between the two (the Environmental Kuznets Curve, or EKC). In the absence of abatement the relationship turns around, verifying the arguments in the literature that abatement is one of the driving forces for an EKC to emerge.



2019 ◽  
Vol 116 (16) ◽  
pp. 7712-7717 ◽  
Author(s):  
Miroslav Kocifaj ◽  
Héctor Antonio Solano-Lamphar ◽  
Gorden Videen

The city emission function (CEF), describing the angular emission from an entire city as a light source, is one of the key elements in night-sky radiance models. The CEF describes the rate at which skyglow depends on distance and is indispensable in any prediction of light-pollution propagation into nocturnal environments. Nevertheless, the CEF remains virtually unexplored because appropriate retrieval tools have been unavailable until very recently. A CEF has now been obtained from ground-based night-sky observations and establishes an experiment successfully conducted in the field to retrieve the angular emission function for an urban area. The field campaign was conducted near the city of Los Mochis, Mexico, which is well isolated from other cities and thus dominates all light emissions in its vicinity. The experiment has proven that radiometry of a night sky can provide information on the light output pattern of a distant city and allows for systematic, full-area, and cost-efficient CEF monitoring worldwide. A database of CEFs could initiate a completely new phase in light-pollution research, with significant economy and advanced accuracy of night-sky brightness predictions. The experiment and its interpretation represent unique progress in the field and contribute to our fundamental understanding of the mechanism by which direct and reflected uplight interact while forming the CEF.



2019 ◽  
Vol 12 (2) ◽  
pp. 269
Author(s):  
M. Barej ◽  
A. Bzdak ◽  
P. Gutowski






Sign in / Sign up

Export Citation Format

Share Document