pollen release
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 34)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 46 (4) ◽  
pp. 1086-1094
Author(s):  
José Floriano Barêa Pastore ◽  
Guilherme Medeiros Antar ◽  
Arthur de Souza Soares ◽  
Félix Forest ◽  
Raymond Mervyn Harley

Abstract— Hyptidinae, ca. 400 species, is an important component of Neotropical vegetation formations. Members of the subtribe possess flowers arranged in variously modified bracteolate cymes and nutlets with an expanded areole and all share a unique explosive mechanism of pollen release, except for Asterohyptis. In a recent phylogenetic study, the group had its generic delimitations rearranged with the recognition of 19 genera in the subtribe. Although the previous phylogenetic analysis covered almost all the higher taxa in the subtribe, it lacked a broader sampling at the species level. Here we present a new expanded phylogenetic analysis for the subtribe comprising 153 accessions of Hyptidinae sequenced for the nuclear nrITS, nrETS, and waxy regions and the plastid markers trnL-F, trnS-G, trnD-T, and matK. Our results widely support the previous phylogenetic results with some changes in the support and relationship between genera. It also uncovers the need for a new combination of Eriope machrisae in Hypenia and the phylogenetic position of Hyptis sect. Rhytidea, which was demonstrated to be part of Mesosphaerum. The generic delimitation in Hyptidinae is discussed, and we recommend that further studies with more markers are needed to confirm the monophyly of Hyptidendron and Mesosphaerum, as well as to support taxonomic changes on the infrageneric delimitation within Hyptis s. s.


Flora ◽  
2021 ◽  
pp. 151961
Author(s):  
Vinícius Lourenço Garcia de Brito ◽  
Fernanda Barão Leite ◽  
Leonardo Ré Jorge ◽  
Marlies Sazima

2021 ◽  
Vol 2 (4) ◽  
pp. 1-1
Author(s):  
Thomas Frei ◽  

Climate change has a major impact on nature and influences ecological systems. The increase in the CO2-concentration in the atmosphere is a major driver of global warming. This study showed that global warming has a major impact on the release of pollen, and hence, on the people suffering from allergies in Switzerland. Basel is a station where long-term pollen observation is conducted, and the data was used to investigate the change during the last 52 years. There are stations throughout the world to measure the atmospheric CO2 concentration. Data from these stations showed an increase in temperature, which influences the biosphere. We found that the flowering time of Hazel, Birch, and Grass pollen has shifted forward in the corresponding season, inducing hay fever early in spring. Earlier pollen release is strongly correlated with and caused by an increase in temperature. This study showed the relationship between increasing CO2-concentration in the atmosphere, the increasing air temperature followed by increasing and earlier pollen counts, and finally, increasing prevalence of pollinosis over half a century.


2021 ◽  
Author(s):  
Mario Vallejo-Marín ◽  
Carlos Eduardo Pereira Nunes ◽  
Avery Leigh Russell

AbstractThe widespread evolution of tube-like anthers releasing pollen from apical pores is associated with buzz pollination, in which bees vibrate flowers to remove pollen. The mechanical connection among anthers in buzz-pollinated species varies from loosely held conformations, to anthers tightly held together with trichomes or bio-adhesives forming a functionally joined conical structure (anther cone). Joined anther cones in buzz-pollinated species have evolved independently across plant families and via different genetic mechanisms, yet their functional significance remains mostly untested. We used experimental manipulations to compare vibrational and functional (pollen release) consequences of joined anther cones in three buzz-pollinated species of Solanum (Solanaceae). We applied bee-like vibrations to focal anthers in flowers with (“joined”) and without (“free”) experimentally created joined anther cones, and characterised vibrations transmitted to other anthers and the amount of pollen released. We found that joined anther architectures cause non-focal anthers to vibrate at higher amplitudes than free architectures. Moreover, in the two species with naturally loosely held anthers, anther fusion increases pollen release, while in the species with a free but naturally compact architecture it does not. We discuss hypotheses for the adaptive significance of the convergent evolution of joined anther cones.


2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Matheus Hansen ◽  
Gabriel C. Lanes ◽  
Vinícius L. G. Brito ◽  
Edson D. Leonel

2021 ◽  
Vol 2 ◽  
Author(s):  
Letty A. de Weger ◽  
Nicolas Bruffaerts ◽  
Mieke M. J. F. Koenders ◽  
Willem W. Verstraeten ◽  
Andy W. Delcloo ◽  
...  

Airborne pollen is a major cause of allergic rhinitis, affecting between 10 and 30% of the population in Belgium, the Netherlands, and Luxembourg (Benelux). Allergenic pollen is produced by wind pollinating plants and released in relatively low to massive amounts. Current climate changes, in combination with increasing urbanization, are likely to affect the presence of airborne allergenic pollen with respect to exposure intensity, timing as well as duration. Detailed analysis of long-term temporal trends at supranational scale may provide more comprehensive insight into these phenomena. To this end, the Spearman correlation was used to statistically compare the temporal trends in airborne pollen concentration monitored at the aerobiological stations which gathered the longest time-series (30–44 years) in the Benelux with a focus on the allergenic pollen taxa: Alnus, Corylus, Betula, Fraxinus, Quercus, Platanus, Poaceae, and Artemisia. Most arboreal species showed an overall trend toward an increase in the annual pollen integral and peak values and an overall trend toward an earlier start and end of the pollen season, which for Betula resulted in a significant decrease in season length. For the herbaceous species (Poaceae and Artemisia), the annual pollen integral and peak values showed a decreasing trend. The season timing of Poaceae showed a trend toward earlier starts and longer seasons in all locations. In all, these results show that temporal variations in pollen levels almost always follow a common trend in the Benelux, suggesting a similar force of climate change-driven factors, especially for Betula where a clear positive correlation was found between changes in temperature and pollen release over time. However, some trends were more local-specific indicating the influence of other environmental factors, e.g., the increasing urbanization in the surroundings of these monitoring locations. The dynamics in the observed trends can impact allergic patients by increasing the severity of symptoms, upsetting the habit of timing of the season, complicating diagnosis due to overlapping pollen seasons and the emergence of new symptoms due allergens that were weak at first.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lucy Nevard ◽  
Avery L. Russell ◽  
Karl Foord ◽  
Mario Vallejo-Marín

AbstractIn buzz-pollinated plants, bees apply thoracic vibrations to the flower, causing pollen release from anthers, often through apical pores. Bees grasp one or more anthers with their mandibles, and vibrations are transmitted to this focal anther(s), adjacent anthers, and the whole flower. Pollen release depends on anther vibration, and thus it should be affected by vibration transmission through flowers with distinct morphologies, as found among buzz-pollinated taxa. We compare vibration transmission between focal and non-focal anthers in four species with contrasting stamen architectures: Cyclamen persicum, Exacum affine, Solanum dulcamara and S. houstonii. We used a mechanical transducer to apply bee-like vibrations to focal anthers, measuring the vibration frequency and displacement amplitude at focal and non-focal anther tips simultaneously using high-speed video analysis (6000 frames per second). In flowers in which anthers are tightly arranged (C. persicum and S. dulcamara), vibrations in focal and non-focal anthers are indistinguishable in both frequency and displacement amplitude. In contrast, flowers with loosely arranged anthers (E. affine) including those with differentiated stamens (heterantherous S. houstonii), show the same frequency but higher displacement amplitude in non-focal anthers compared to focal anthers. We suggest that stamen architecture modulates vibration transmission, potentially affecting pollen release and bee behaviour.


Sign in / Sign up

Export Citation Format

Share Document