amplitude transmission
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

2022 ◽  
pp. 1-13
Author(s):  
Jiangang Liu ◽  
Zhipeng Tong ◽  
Yu Gao-hong ◽  
Xiong Zhao ◽  
Haili Zhou

Abstract This study proposes a new non–circular gear transmission mechanism with an involute–cycloid composite tooth profile to realize the twice unequal amplitude transmission (In a complete rotation cycle of gear transmission, instantaneous transmission ratio has twice fluctuations obvious with unequal amplitude) of non–circular gears. The twice unequal amplitude transmission ratio curve was designed based on Fourier and polynomial functions, the change law of the Fourier coefficient on the instantaneous transmission ratio(In non-circular gear transmission, the transmission ratio changes with time, and the transmission ratio of non-circular gear should be instantaneous transmission ratio) was analyzed, and the pressure angle and contact ratio of the involute–cycloid composite tooth profile was calculated. The involute–cycloid composite tooth profile non–circular gear was machined by WEDM technology, while its meshing experiment was performed using high-speed camera technology. The results demonstrate that the instantaneous transmission ratio curve value obtained via the high-speed camera experiment was consistent with the simulation value of virtual software. Furthermore, the involute–cycloid composite tooth profile was applied in the seedling pickup mechanism of non–circular gear planetary gear train. The possibility of the application of the involute–cycloid composite tooth profile in the seedling pickup mechanism was verified by comparing the consistency of the theoretical and simulated seedling picking trajectory.


2020 ◽  
Vol 76 (4) ◽  
pp. 494-502
Author(s):  
Minas K. Balyan ◽  
Levon V. Levonyan ◽  
Karapet G. Trouni

Two-wave dynamical diffraction of an X-ray spherical wave in a crystal, when the wave passes through an object with a periodic amplitude transmission function, is considered. The behavior of the diffracted wave (spherical-wave Talbot effect) in the crystal is investigated. The Talbot effect inside the crystal is accompanied by the focusing effect and the pendulum effect. Peculiarities of the effect before the focus point, in the focusing plane and in the region after the focus point inside the crystal are revealed. An expression is found for the Talbot depth and the spherical-wave Talbot effect in these three regions is investigated. The spherical-wave dynamical diffraction Talbot effect in a crystal is compared with the classical spherical-wave Talbot effect and also with spherical-wave effects inside the crystal without a periodic object.


2020 ◽  
Vol 6 (18) ◽  
pp. eaaz3025 ◽  
Author(s):  
Peter D. Baksh ◽  
Michal Ostrčil ◽  
Magdalena Miszczak ◽  
Charles Pooley ◽  
Richard T. Chapman ◽  
...  

Microscopy with extreme ultraviolet (EUV) light can provide many advantages over optical, hard x-ray or electron-based techniques. However, traditional EUV sources and optics have large disadvantages of scale and cost. Here, we demonstrate the use of a laboratory-scale, coherent EUV source to image biological samples—mouse hippocampal neurons—providing quantitative phase and amplitude transmission information with a lateral resolution of 80 nm and an axial sensitivity of ~1 nm. A comparison with fluorescence imaging of the same samples demonstrated EUV imaging was able to identify, without the need for staining or superresolution techniques, <100-nm-wide and <10-nm-thick structures not observable from the fluorescence images. Unlike hard x-ray microscopy, no damage is observed of the delicate neuron structure. The combination of previously demonstrated tomographic imaging techniques with the latest advances in laser technologies and coherent EUV sources has the potential for high-resolution element-specific imaging within biological structures in 3D.


Author(s):  
Genevieve Palardy ◽  
Huajie Shi ◽  
Arthur Levy ◽  
Steven Le Corre ◽  
Irene Fernandez Villegas

2013 ◽  
Vol 21 (1) ◽  
pp. 127-130 ◽  
Author(s):  
Minas K. Balyan

A numerical method of reconstruction of an object image using an X-ray dynamical diffraction Fraunhofer hologram is presented. Analytical approximation methods and numerical methods of iteration are discussed. An example of a reconstruction of an image of a cylindrical beryllium wire is considered. The results of analytical approximation and zero-order iteration coincide with exact values of the amplitude complex transmission coefficient of the object as predicted by the resolution limit of the scheme, except near the edges of the object. Calculations of the first- and second-order iterations improve the result at the edges of the object. This method can be applied for determination of the complex amplitude transmission coefficient of amplitude as well as phase objects. It can be used in X-ray microscopy.


2013 ◽  
Vol 19 (1) ◽  
pp. 142-146
Author(s):  
M. A. Salim ◽  
A. Putra ◽  
M. A. Abdullah ◽  
A. Noordin ◽  
B. T. Tee

Sign in / Sign up

Export Citation Format

Share Document