scholarly journals Quantitative and correlative extreme ultraviolet coherent imaging of mouse hippocampal neurons at high resolution

2020 ◽  
Vol 6 (18) ◽  
pp. eaaz3025 ◽  
Author(s):  
Peter D. Baksh ◽  
Michal Ostrčil ◽  
Magdalena Miszczak ◽  
Charles Pooley ◽  
Richard T. Chapman ◽  
...  

Microscopy with extreme ultraviolet (EUV) light can provide many advantages over optical, hard x-ray or electron-based techniques. However, traditional EUV sources and optics have large disadvantages of scale and cost. Here, we demonstrate the use of a laboratory-scale, coherent EUV source to image biological samples—mouse hippocampal neurons—providing quantitative phase and amplitude transmission information with a lateral resolution of 80 nm and an axial sensitivity of ~1 nm. A comparison with fluorescence imaging of the same samples demonstrated EUV imaging was able to identify, without the need for staining or superresolution techniques, <100-nm-wide and <10-nm-thick structures not observable from the fluorescence images. Unlike hard x-ray microscopy, no damage is observed of the delicate neuron structure. The combination of previously demonstrated tomographic imaging techniques with the latest advances in laser technologies and coherent EUV sources has the potential for high-resolution element-specific imaging within biological structures in 3D.

2013 ◽  
Vol 25 (12) ◽  
pp. 3119-3122 ◽  
Author(s):  
陈伯伦 Chen Bolun ◽  
杨正华 Yang Zhenghua ◽  
韦敏习 Wei Minxi ◽  
邓博 Deng Bo ◽  
苏明 Su Ming ◽  
...  

1996 ◽  
Vol 152 ◽  
pp. 309-316
Author(s):  
Frits Paerels ◽  
Min Young Hur ◽  
Christopher W. Mauche

A longstanding problem in the interpretation of the X-ray and extreme ultraviolet emission from strongly magnetic cataclysmic variables can be addressed definitively with high resolution EUV spectroscopy. A detailed photospheric spectrum of the accretion-heated polar cap of the white dwarf is sensitive in principle to the temperature structure of the atmosphere. This may allow us to determine where and how the bulk of the accretion energy is thermalized. The EUVE data on AM Herculis and EF Eridani are presented and discussed in this context.


2014 ◽  
Vol 898 ◽  
pp. 614-617
Author(s):  
Rui Hong Li ◽  
Yue Ping Han

The present paper reviews the X-ray grating imaging systems at home and abroad from the aspects of technological characterizations and the newest researching focus. First, not only the imaging principles and the frameworks of the typical X-ray grating imaging system based on Talbot-Lau interferometry method, but also the algorithms of retrieving the signals of attenuation, refraction and small-angle scattering are introduced. Second, the system optimizing methods are discussed, which involves mainly the relaxing the requirement of high positioning resolution and strict circumstances for gratings and designing large field of view with high resolution. Third, two and four-dimensional grating-based X-ray imaging techniques are introduced.


2019 ◽  
Vol 56 (6) ◽  
pp. 885-892 ◽  
Author(s):  
Louis King ◽  
Abdelmalek Bouazza ◽  
Anton Maksimenko ◽  
Will P. Gates ◽  
Stephen Dubsky

The measurement of displacement fields by nondestructive imaging techniques opens up the potential to study the pre-failure mechanisms of a wide range of geotechnical problems within physical models. With the advancement of imaging technologies, it has become possible to achieve high-resolution three-dimensional computed tomography volumes of relatively large samples, which may have previously resulted in excessively long scan times or significant imaging artefacts. Imaging of small-scale model piled embankments (142 mm diameter) comprising sand was undertaken using the imaging and medical beamline at the Australian Synchrotron. The monochromatic X-ray beam produced high-resolution reconstructed volumes with a fine texture due to the size and mineralogy of the sand grains as well as the phase contrast enhancement achieved by the monochromatic X-ray beam. The reconstructed volumes were well suited to the application of digital volume correlation, which utilizes cross-correlation techniques to estimate three-dimensional full-field displacement vectors. The output provides insight into the strain localizations that develop within piled embankments and an example of how advanced imaging techniques can be utilized to study the kinematics of physical models.


Author(s):  
Peter R. Young

Future prospects for solar spectroscopy missions operating in the extreme ultraviolet (EUV) and soft X-ray (SXR) wavelength ranges, 1.2–1,600 Å, are discussed. NASA is the major funder of Solar Physics missions, and brief summaries of the opportunities for mission development under NASA are given. Upcoming major solar missions from other nations are also described. The methods of observing the Sun in the two wavelength ranges are summarized with a discussion of spectrometer types, imaging techniques and detector options. The major spectral features in the EUV and SXR regions are identified, and then the upcoming instruments and concepts are summarized. The instruments range from large spectrometers on dedicated missions, to tiny, low-cost CubeSats launched through rideshare opportunities.


2008 ◽  
Vol 100 (5) ◽  
pp. 2966-2976 ◽  
Author(s):  
David D. Cox ◽  
Alexander M. Papanastassiou ◽  
Daniel Oreper ◽  
Benjamin B. Andken ◽  
James J. DiCarlo

Much of our knowledge of brain function has been gleaned from studies using microelectrodes to characterize the response properties of individual neurons in vivo. However, because it is difficult to accurately determine the location of a microelectrode tip within the brain, it is impossible to systematically map the fine three-dimensional spatial organization of many brain areas, especially in deep structures. Here, we present a practical method based on digital stereo microfocal X-ray imaging that makes it possible to estimate the three-dimensional position of each and every microelectrode recording site in “real time” during experimental sessions. We determined the system's ex vivo localization accuracy to be better than 50 μm, and we show how we have used this method to coregister hundreds of deep-brain microelectrode recordings in monkeys to a common frame of reference with median error of <150 μm. We further show how we can coregister those sites with magnetic resonance images (MRIs), allowing for comparison with anatomy, and laying the groundwork for more detailed electrophysiology/functional MRI comparison. Minimally, this method allows one to marry the single-cell specificity of microelectrode recording with the spatial mapping abilities of imaging techniques; furthermore, it has the potential of yielding fundamentally new kinds of high-resolution maps of brain function.


1992 ◽  
Vol 9 ◽  
pp. 657-658
Author(s):  
J.L. Linsky

Although coronae for stars other than the Sun have previously been detected only in the X-ray and radio portions of the spectrum, the HST and future spacecraft sensitive to ultraviolet (UV) and extreme ultraviolet (ETIV) light will have the spectral resolution to study the dynamics and spectroscopic diagnostics of hot coronal plasmas. In the UV region accessible to HST, forbidden lines of FeXII at 1242 and 1349Å, of FeXXI at 1354Å, and other species seen in solar flares, are predicted to be present in the spectra of active stars. Upcoming observations with the Goddard High Resolution Spectrograph (GHRS) by S. Maran will search for these lines in the dM2e star AU Mic and other stars.


2004 ◽  
Vol 75 (10) ◽  
pp. 3723-3726 ◽  
Author(s):  
P. Beiersdorfer ◽  
E. W. Magee ◽  
E. Träbert ◽  
H. Chen ◽  
J. K. Lepson ◽  
...  

2016 ◽  
Vol 23 (5) ◽  
pp. 1232-1236
Author(s):  
Jih-Young Yuh ◽  
Shang-Wei Lin ◽  
Liang-Jen Huang ◽  
Long-Life Lee

A digital autocollimator of resolution 0.1 µrad (0.02 arcsec) serves as a handy correction tool for calibrating the angular uncertainty during angular and lateral movements of gratings inside a monochromator chamber under ultra-high vacuum. The photon energy dispersed from the extreme ultraviolet (XUV) to the soft X-ray region of the synchrotron beamline at the Taiwan Light Source was monitored using molecular ionization spectra at high resolution as energy references that correlate with the fine angular steps during grating rotation. The angular resolution of the scanning mechanism was <0.3 µrad, which results in an energy shift of 80 meV at 867 eV. The angular uncertainties caused by the lateral movement during a grating exchange were decreased from 2.2 µrad to 0.1 µrad after correction. The proposed method provides a simple solution for on-site beamline diagnostics of highly precise multi-axis optical manipulating instruments at synchrotron facilities and in-house laboratories.


Sign in / Sign up

Export Citation Format

Share Document