coelopa frigida
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 4)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Emma L. Berdan ◽  
Claire Mérot ◽  
Henrik Pavia ◽  
Kerstin Johannesson ◽  
Maren Wellenreuther ◽  
...  

2021 ◽  
Author(s):  
Emma Berdan ◽  
Claire Merot ◽  
Henrik Pavia ◽  
Kerstin Johannesson ◽  
Maren Wellenreuther ◽  
...  

Inversions often underlie complex adaptive traits, but the genic targets inside them are largely unknown. Gene expression profiling provides a powerful way to link inversions with their phenotypic consequences. We examined the effects of the Cf-Inv(1) inversion in the seaweed fly Coelopa frigida on gene expression variation across sexes and life stages. Our analyses revealed that Cf-Inv(1) shapes global expression patterns but the extent of this effect is variable with much stronger effects in adults than larvae. Furthermore, within adults, both common as well as sex specific patterns were found. The vast majority of these differentially expressed genes mapped to Cf-Inv(1). However, genes that were differentially expressed in a single context (i.e. in males, females or larvae) were more likely to be located outside of Cf-Inv(1). By combining our findings with genomic scans for environmentally associated SNPs, we were able to pinpoint candidate variants in the inversion that may underlie mechanistic pathways that determine phenotypes. Together the results in this study, combined with previous findings, support the notion that the polymorphic Cf-Inv(1) inversion in this species is a major factor shaping both coding and regulatory variation resulting in highly complex adaptive effects.


2019 ◽  
Vol 9 (21) ◽  
pp. 12156-12170 ◽  
Author(s):  
Emma Berdan ◽  
Swantje Enge ◽  
Göran M. Nylund ◽  
Maren Wellenreuther ◽  
Gerrit A. Martens ◽  
...  

2019 ◽  
Author(s):  
Claire Mérot ◽  
Violaine Llaurens ◽  
Eric Normandeau ◽  
Louis Bernatchez ◽  
Maren Wellenreuther

AbstractHow genetic diversity is maintained in natural populations is an evolutionary puzzle. Over time, genetic variation within species can be eroded by drift and directional selection, leading to the fixation or elimination of alleles. However, some loci show persistent variants at intermediate frequencies for long evolutionary time-scales, implicating a role of balancing selection, but studies are seldom set up to uncover the underlying processes. Here, we identify and quantify the selective pressures involved in the widespread maintenance of an inversion polymorphism in the seaweed fly Coelopa frigida, using an experimental evolution approach to estimate fitness associated with different allelic combinations. By precisely evaluating reproductive success and survival rates separately, we show that the maintenance of the polymorphism is governed by a life-history trade-off, whereby each inverted haplotype has opposed pleiotropic effects on survival and reproduction. Using numerical simulations, we confirm that this uncovered antagonism between natural and sexual selection can maintain inversion variation in natural populations of C. frigida. Moreover, our experimental data highlights that inversion-associated fitness is affected differently by sex, dominance and environmental heterogeneity. The interaction between these factors promotes polymorphism maintenance through antagonistic pleiotropy. Taken together, our findings indicate that combinations of natural and sexual selective mechanisms enable the persistence of diverse trait in nature. The joint dynamics of life history trade-offs and antagonistic pleiotropy documented here is likely to apply to other species where large phenotypic variation is controlled by structural variants.Significance statementPersistence of chromosomal rearrangements is widespread in nature and often associated with divergent life-history traits. Understanding how contrasted life-history strategies are maintained in wild populations has implications for food production, health and biodiversity in a changing environment. Using the seaweed fly Coelopa frigida, we show that a polymorphic chromosomal inversion is maintained by a trade-off between survival and reproduction, and thus provide empirical support for a role of balancing selection via antagonistic pleiotropy. This mechanism has long been overlooked because it was thought to only apply to a narrow range of ecological scenarios. These findings empirically reinforce the recent theoretical predictions that co-interacting factors (dominance, environment and sex) can lead to polymorphism maintenance by antagonistic pleiotropy and favour life-history variation.


2018 ◽  
Vol 32 (6) ◽  
pp. 683-698 ◽  
Author(s):  
Emma Berdan ◽  
Hanna Rosenquist ◽  
Keith Larson ◽  
Maren Wellenreuther

2018 ◽  
Vol 4 (2) ◽  
pp. 135-142 ◽  
Author(s):  
I. Biancarosa ◽  
N.S. Liland ◽  
N. Day ◽  
I. Belghit ◽  
H. Amlund ◽  
...  

Two species of seaweed flies, Coelopa frigida and Coelopa pilipes, were reared in the laboratory and their larvae were sampled for composition of amino acids, fatty acids and elements. The larvae were grown on two different species of seaweed, Laminaria digitata and Fucus serratus. The aim was to gain knowledge on the influence of feeding media on the growth and composition of the larvae. F. serratus was more nutrient-dense than L. digitata, being richer in both protein and lipids, and thus led to ~70% higher larvae growth. The larvae grown on F. serratus also had higher lipid and protein content than the larvae grown on L. digitata; F. serratus-grown larvae had ~8-9% protein and ~18% lipid (total fatty acids) (both values of dry matter), while the larvae grown on L. digitata had only ~7.5% protein and ~13% lipids. All seaweed flies had a similar and balanced amino acid composition, suitable for animal and human nutrition. The fatty acid composition was not highly affected by either insect species or feeding media, with all groups containing high concentrations of the monounsaturated fatty acid, palmitoleic acid (16:1n-7). The larvae also contained some fatty acids characteristic of marine environments, like eicosapentaenoic acid (20:5n-3), likely originating from the seaweed. Both species of seaweed fly larvae accumulated As, Cd, and Pb, but not Hg. The elevated levels of As and Cd in the larvae (highest measured concentrations 18.4 and 11.6 mg/kg, respectively, based on 12% moisture content) could potentially limit the use of seaweed fly larvae as a feed ingredient.


2018 ◽  
Author(s):  
Emma Berdan ◽  
Swantje Enge ◽  
Göran M. Nylund ◽  
Maren Wellenreuther ◽  
Gerrit A. Martens ◽  
...  

Cuticular hydrocarbons (CHCs) form the boundary between insects and their environments and often act as essential cues for species, mate and kin recognition. This complex polygenic trait can be highly variable both among and within species, but the causes of this variation, especially the genetic basis, are largely unknown. In this study, we investigated phenotypic and genetic variation of CHCs in the seaweed fly, C. frigida, and found that composition was affected by both genetic (sex and population) and environmental (larval diet) factors. We subsequently conducted behavioral trials that show CHCs are likely used as a sexual signal. We identified general shifts in CHC chemistry as well as individual compounds and found that the methylated compounds, mean chain length, proportion of alkenes, and normalized total CHCs differed between sexes and populations. We combined this data with whole genome re-sequencing data to examine the genetic underpinnings of these differences. We identified 11 genes related to CHC synthesis and found population level outlier SNPs in 5 that are concordant with phenotypic differences. Together these results reveal that the CHC composition of C. frigida is dynamic, strongly affected by the larval environment, and likely under natural and sexual selection.


2018 ◽  
Author(s):  
Emma Berdan ◽  
Hanna Rosenquist ◽  
Keith Larson ◽  
Maren Wellenreuther

AbstractUnderstanding how environmental variation drives phenotypic diversification within species is a major objective in evolutionary biology. The seaweed fly Coelopa frigida provides an excellent model for the study of genetically driven phenotypes because it carries an α/β inversion polymorphism that affects body size. Coelopa frigida inhabits highly variable beds of decomposing seaweed on the coast in Scandinavia thus providing a suitable test ground to investigate the genetic effects of substrate on both the frequency of the inversion (directional selection) and on the phenotype (genotype x environment effects). Here we use a reciprocal transplant experiment to test the effect of the α/β inversion on body size traits and development time across four suitable natural breeding substrates from the clinal distribution. We show that while development time is unaffected by GxE effects, both the frequency of the inversion and the relative phenotypic effects of the inversion on body size differ between population x substrate combinations. This indicates that the environment modulates the fitness as well as the phenotypic effects of the inversion karyotypes. It further suggests that the inversion may have accumulated qualitatively different mutations in different populations that interact with the environment. Together our results are consistent with the idea that the inversion in C. frigida likely evolves via a combination of local mutation, GxE effects, and differential fitness of inversion karyotypes in heterogeneous environments.


2018 ◽  
Author(s):  
Claire Mérot ◽  
Emma Berdan ◽  
Charles Babin ◽  
Eric Normandeau ◽  
Maren Wellenreuther ◽  
...  

AbstractLarge chromosomal rearrangements are thought to facilitate adaptation to heterogeneous environments by limiting genomic recombination. Indeed, inversions have been implicated in adaptation along environmental clines and in ecotype specialisation. Here, we combine classical ecological studies and population genetics to investigate an inversion polymorphism previously documented in Europe among natural populations of the seaweed fly Coelopa frigida along a latitudinal cline in North America. We test if the inversion is present in North America and polymorphic, assess which environmental conditions modulate the inversion karyotype frequencies, and document the relationship between inversion karyotype and adult size. We sampled nearly 2,000 flies from 20 populations along several environmental gradients to quantify associations of inversion frequencies to heterogeneous environmental variables. Genotyping and phenotyping showed a widespread and conserved inversion polymorphism between Europe and America. Variation in inversion frequency was significantly associated with environmental factors, with parallel patterns between continents, indicating that the inversion may play a role in local adaptation. The three karyotypes of the inversion are differently favoured across micro-habitats and represent life-history strategies likely maintained by the collective action of several mechanisms of balancing selection. Our study adds to the mounting evidence that inversions are facilitators of adaptation and enhance within-species diversity.


Sign in / Sign up

Export Citation Format

Share Document