laminaria digitata
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 40)

H-INDEX

37
(FIVE YEARS 5)

2021 ◽  
Author(s):  
◽  
Sayani Ghosh

<p>Alginate is known to be a commercially valuable polysaccharide, of great importance in industries such as food, cosmetics, medicine and pharmaceuticals. It is obtained commercially by harvesting brown algae. The final step in the alginate biochemical pathway involves the epimerization of D-mannuronic residues into L-guluronic residues, catalyzed by the enzyme mannuronan-C5-epimerase. This final step has been found to be responsible for controlling the physicochemical properties of the produced alginate. This study is the first to characterize the genes encoding for the enzyme mannuronan-C5- epimerase in the Northern, Southern and Wellington lineages of the brown alga Lessonia variegata (Phaeophyceae). The gene of interest was amplified by standard PCR and cloning. Cloning PCR results revealed the presence of two distinct copies of the gene in Lessonia variegata. The coding region of the copies was found to be very conserved with very little sequence variation. The Lessonia variegata sequences were compared with those of Laminaria digitata and Saccharina japonica, which indicated that at least one gene duplication event has occurred in Lessonia variegata, leading to the formation of two gene duplicates. The possible mechanisms by which the gene paralogs may control the structure and function of the produced alginate have been discussed.</p>


2021 ◽  
Author(s):  
◽  
Sayani Ghosh

<p>Alginate is known to be a commercially valuable polysaccharide, of great importance in industries such as food, cosmetics, medicine and pharmaceuticals. It is obtained commercially by harvesting brown algae. The final step in the alginate biochemical pathway involves the epimerization of D-mannuronic residues into L-guluronic residues, catalyzed by the enzyme mannuronan-C5-epimerase. This final step has been found to be responsible for controlling the physicochemical properties of the produced alginate. This study is the first to characterize the genes encoding for the enzyme mannuronan-C5- epimerase in the Northern, Southern and Wellington lineages of the brown alga Lessonia variegata (Phaeophyceae). The gene of interest was amplified by standard PCR and cloning. Cloning PCR results revealed the presence of two distinct copies of the gene in Lessonia variegata. The coding region of the copies was found to be very conserved with very little sequence variation. The Lessonia variegata sequences were compared with those of Laminaria digitata and Saccharina japonica, which indicated that at least one gene duplication event has occurred in Lessonia variegata, leading to the formation of two gene duplicates. The possible mechanisms by which the gene paralogs may control the structure and function of the produced alginate have been discussed.</p>


2021 ◽  
Vol 308 ◽  
pp. 125068
Author(s):  
Manal Bouasria ◽  
Yassine El Mendili ◽  
Mohammed-Hichem Benzaama ◽  
Valérie Pralong ◽  
Jean-François Bardeau ◽  
...  

2021 ◽  
Vol 9 (10) ◽  
pp. 1082
Author(s):  
Jessica M. M. Adams ◽  
S. Michael Morris ◽  
Laura Steege ◽  
Joanne Robinson ◽  
Charles Bavington

Using brown seaweed kelp species Saccharina latissima and Laminaria digitata as feedstocks, a set of pilot-scale macroalgae processing batches were conducted (50–200 kg per batch) for the production of a range of food-grade liquid and solid fractions. The aim of this communication is to relay a number of lessons learnt during this period in combination with previous relevant observations and considerations for others who are intending to process macroalgae at scale. The novelty of this paper is thus to form a bridge between academic findings and practical know-how. Considerations covers material diversity; abiotic and biotic impact and variation; and supply chain considerations. Observations covers milling and cutting; equipment requirements; and acids including their effects on heavy metals, especially lead. Recommendations summarises key points from this pilot-scale and previous work. These include: harvest seasonality, water quality and proximity to processing facilities; minimising contaminants within the macroalgae such as stones and shells; considering equipment composition and volume for all steps and processes including final product quality; acid choice and its effects on both the equipment used and the metals bioaccumulated within the macroalgae.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 557
Author(s):  
Cristina Campobenedetto ◽  
Chiara Agliassa ◽  
Giuseppe Mannino ◽  
Ivano Vigliante ◽  
Valeria Contartese ◽  
...  

Water deficit is one of the most problematic stressors worldwide. In this context, the use of biostimulants represents an increasingly ecological practice aimed to improve crop tolerance and mitigate the negative effects on the productivity. Here, the effect derived from the foliar application of ERANTHIS®, a biostimulant based on seaweed (Ascophyllum nodosum and Laminaria digitata) and yeast extracts, was tested on tomato plants grown under mild water-stress conditions. The potential stress mitigation action was evaluated by monitoring morphometric (fresh weight and dry matter content), physiological (stem water potential) and biochemical (ROS scavenger enzymes activity, proline, abscisic acid, hydrogen peroxide and photosynthetic pigment content) parameters closely related to the occurrence and response to stress at both flowering and fruit-set timing. In general, we observed that plants grown under drought conditions and treated with the biostimulant had a lower amount of ABA, and MDA and proline correlated to a lower activity of ROS scavenger enzymes compared to untreated plants. These data, together with the higher stem water potential and photosynthetic pigment levels recorded for the treated plants, suggest that ERANTHIS® may mitigate water stress effects on tomato.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jeneesha George ◽  
A. Thabitha ◽  
N. Vignesh ◽  
V. Manigandan ◽  
R. Saravanan ◽  
...  

This study explores the antiskin cancer effect of formulated agar (FA) from Laminaria digitata on dimethyl benzanthracene- (DMBA-) induced skin cancer mice. The agar was extracted and formulated (emulgel), and FA was biochemically characterized. The in vitro cytotoxicity of FA was tested using NTT 3T3 mice fibroblast cells. The mice were divided into 5 groups: group 1 served as control mice, group 2 mice were considered as DMBA-induced cancer control, group 3 mice were FA pretreated (low dose) + DMBA-induced mice, group 4 mice were FA pretreated (high dose) + DMBA-induced mice, and group 5 were positive control + DMBA-induced mice. The behaviour and biochemical markers of cancer were significantly decreased in group 2 (DMBA-induced) mice, which were brought to near normalcy by FA pretreated mice (groups 3 and 4). The levels of p53 and keratin were significantly elevated in group 2 mice and these levels were decreased in 3 and 4 mice as well. The histopathological examination of DMBA-induced mice was shown degenerated cervical patches in the skin, cirrhosis in liver, oedema in the renal tissue, and swollen and damage in cardiac tissue, which were reduced for the mice applied with FA. This confirms that FA pretreatment offered potential antiskin cancer property.


Author(s):  
Ragnhildur Einarsdóttir ◽  
Kristín Anna Þórarinsdóttir ◽  
Björn Viðar Aðalbjörnsson ◽  
Magnús Guðmundsson ◽  
Guðrún Marteinsdóttir ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Christos Katsaros ◽  
Sophie Le Panse ◽  
Gillian Milne ◽  
Carl J. Carrano ◽  
Frithjof Christian Küpper

Abstract The objective of the present study is to examine the fine structure of vegetative cells of Laminaria digitata using both chemical fixation and cryofixation. Laminaria digitata was chosen due to its importance as a model organism in a wide range of biological studies, as a keystone species on rocky shores of the North Atlantic, its use of iodide as a unique inorganic antioxidant, and its significance as a raw material for the production of alginate. Details of the fine structural features of vegetative cells are described, with particular emphasis on the differences between the two methods used, i.e. conventional chemical fixation and freeze-fixation. The general structure of the cells was similar to that already described, with minor differences between the different cell types. An intense activity of the Golgi system was found associated with the thick external cell wall, with large dictyosomes from which numerous vesicles and cisternae are released. An interesting type of cisternae was found in the cryofixed material, which was not visible with the chemical fixation. These are elongated structures, in sections appearing tubule-like, close to the external cell wall or to young internal walls. An increased number of these structures was observed near the plasmodesmata of the pit fields. They are similar to the “flat cisternae” found associated with the forming cytokinetic diaphragm of brown algae. Their possible role is discussed. The new findings of this work underline the importance of such combined studies which reveal new data not known until now using the old conventional methods. The main conclusion of the present study is that cryofixation is the method of choice for studying Laminaria cytology by transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document